Dam-Seul Ko , Hyun-Mo Jeong , Yu-Jeong Shin, Da-Woon Jeong, Na-Ri Kim, Jae-Hoon Shim
{"title":"Comparison of novel α-glucosidases in glycoside hydrolase family 97 isolated from Bacteroides thetaiotaomicron","authors":"Dam-Seul Ko , Hyun-Mo Jeong , Yu-Jeong Shin, Da-Woon Jeong, Na-Ri Kim, Jae-Hoon Shim","doi":"10.1016/j.enzmictec.2025.110696","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, three genes encoding novel Glycoside Hydrolase (GH) 97 enzymes were cloned from <em>Bacteroides thetaiotaomicron</em> and expressed in <em>Escherichia coli</em>. The recombinant enzymes (Bt_4581, Bt_0683, Bt_3163) were purified using Ni-NTA affinity chromatography and subsequently characterized. All three enzymes released glucose from the non-reducing ends of oligosaccharides and displayed metal ion dependency. Among them, Bt_4581 hydrolyzed a wide range of α-glycosidic linkages, while Bt_0683 and Bt_3163 showed narrower substrate specificity. Amino acid sequence analysis indicated that Bt_4581 and Bt_0683 belong to Group 1, whereas Bt_3163 is part of Group 3. Kinetic studies revealed that Bt_4581 preferred maltooligosaccharides with an odd number of glucosyl units. In contrast, Bt_3163 exhibited a preference for α-<em>p</em>NPG, confirming it as the first characterized α-glucosidase in Group 3 of the GH 97 family.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"190 ","pages":"Article 110696"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925001164","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, three genes encoding novel Glycoside Hydrolase (GH) 97 enzymes were cloned from Bacteroides thetaiotaomicron and expressed in Escherichia coli. The recombinant enzymes (Bt_4581, Bt_0683, Bt_3163) were purified using Ni-NTA affinity chromatography and subsequently characterized. All three enzymes released glucose from the non-reducing ends of oligosaccharides and displayed metal ion dependency. Among them, Bt_4581 hydrolyzed a wide range of α-glycosidic linkages, while Bt_0683 and Bt_3163 showed narrower substrate specificity. Amino acid sequence analysis indicated that Bt_4581 and Bt_0683 belong to Group 1, whereas Bt_3163 is part of Group 3. Kinetic studies revealed that Bt_4581 preferred maltooligosaccharides with an odd number of glucosyl units. In contrast, Bt_3163 exhibited a preference for α-pNPG, confirming it as the first characterized α-glucosidase in Group 3 of the GH 97 family.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.