Unraveling the tumor-microenvironment through a radiogenomic-based multiomic approach to predict outcomes of immunotherapy in non-small cell lung cancer
IF 4.9 2区 医学Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dong Young Jeong , Cheol Yong Joe , Sang Min Lee , Sehhoon Park , Seung Hwan Moon , Joon Young Choi , Jonghoon Kim , Se-Hoon Lee , Ho Yun Lee
{"title":"Unraveling the tumor-microenvironment through a radiogenomic-based multiomic approach to predict outcomes of immunotherapy in non-small cell lung cancer","authors":"Dong Young Jeong , Cheol Yong Joe , Sang Min Lee , Sehhoon Park , Seung Hwan Moon , Joon Young Choi , Jonghoon Kim , Se-Hoon Lee , Ho Yun Lee","doi":"10.1016/j.cmpb.2025.108915","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The tumor microenvironment (TME) plays a critical role in influencing immune checkpoint inhibitor (ICI) therapy outcomes in advanced non-small cell lung cancer (NSCLC). This study aimed to develop a radiomics model reflecting an ICI-favorable TME based on whole transcriptome sequencing (WTS).</div></div><div><h3>Methods</h3><div>This multi-center retrospective cohort study included training (n = 120), internal validation (n = 319), and external validation (n = 150) cohorts of advanced NSCLC patients who received ICI as first- or second-line therapy. The radiomics model (rTME) was developed based on the TME score, which reflected ICI-favorable immune cell compositions. The model’s performance was assessed using the C-index, and survival outcomes were also evaluated.</div></div><div><h3>Results</h3><div>In the training cohort, high rTME scores were associated with significantly prolonged progression-free survival (PFS) (median 4.1 vs. 2.9 months, p = 0.024) and overall survival (OS) (median 15.0 vs. 8.4 months, p = 0.030). Similar trends were observed in the internal validation cohort for PFS (median 3.3 vs. 2.1 months, p = 0.004) and OS (median 13.9 vs. 7.3 months, p = 0.004), as well as in the external validation cohort for OS (median 15.5 vs. 7.3 months, p = 0.008). Integrating clinical variables improved predictive accuracy in both the training and internal validation cohorts.</div></div><div><h3>Conclusion</h3><div>Our radiomics model, reflecting the ICI-favorable immune cell expression in the TME, showed a positive association with ICI outcomes in NSCLC patients. Integrating radiomics and clinical variables enhances prognostic accuracy, demonstrating the model’s potential utility in guiding ICI therapy decisions.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"269 ","pages":"Article 108915"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725003323","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The tumor microenvironment (TME) plays a critical role in influencing immune checkpoint inhibitor (ICI) therapy outcomes in advanced non-small cell lung cancer (NSCLC). This study aimed to develop a radiomics model reflecting an ICI-favorable TME based on whole transcriptome sequencing (WTS).
Methods
This multi-center retrospective cohort study included training (n = 120), internal validation (n = 319), and external validation (n = 150) cohorts of advanced NSCLC patients who received ICI as first- or second-line therapy. The radiomics model (rTME) was developed based on the TME score, which reflected ICI-favorable immune cell compositions. The model’s performance was assessed using the C-index, and survival outcomes were also evaluated.
Results
In the training cohort, high rTME scores were associated with significantly prolonged progression-free survival (PFS) (median 4.1 vs. 2.9 months, p = 0.024) and overall survival (OS) (median 15.0 vs. 8.4 months, p = 0.030). Similar trends were observed in the internal validation cohort for PFS (median 3.3 vs. 2.1 months, p = 0.004) and OS (median 13.9 vs. 7.3 months, p = 0.004), as well as in the external validation cohort for OS (median 15.5 vs. 7.3 months, p = 0.008). Integrating clinical variables improved predictive accuracy in both the training and internal validation cohorts.
Conclusion
Our radiomics model, reflecting the ICI-favorable immune cell expression in the TME, showed a positive association with ICI outcomes in NSCLC patients. Integrating radiomics and clinical variables enhances prognostic accuracy, demonstrating the model’s potential utility in guiding ICI therapy decisions.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.