Kan Ma , Sibo Cheng , Xianfeng Ma , Thomas Blackburn , Alexander J. Knowles , Ke An , Javier Santisteban , Fan Sun , Christopher H. Zenk , Pedro A. Ferreirós
{"title":"Lattice misfit design and characterisation in BCC superalloys","authors":"Kan Ma , Sibo Cheng , Xianfeng Ma , Thomas Blackburn , Alexander J. Knowles , Ke An , Javier Santisteban , Fan Sun , Christopher H. Zenk , Pedro A. Ferreirós","doi":"10.1016/j.scriptamat.2025.116802","DOIUrl":null,"url":null,"abstract":"<div><div>BCC superalloys are a promising class of high-temperature materials with a wide range of lattice misfit values, ranging from near-zero to ∼8 %. Analogous to nickel superalloys, lattice misfit combined with elastic anisotropy dictates precipitate morphology (spherical, cuboidal, plate/needle-like), coarsening kinetics, strengthening mechanisms, and microstructure evolution, making misfit control critical for tailoring microstructural stability and creep resistance. However, misfit characterisation, especially at high temperatures, is still in its infancy to establish its links with mechanical properties. This perspective emphasises three aspects of BCC superalloys: representative misfit-driven microstructures and temperature-dependent misfit evolution, state-of-the-art diffraction techniques for high-temperature misfit quantification, and machine learning frameworks to accelerate alloy design involving misfit. By consolidating diverse misfit data and advanced characterisation/modelling strategies, we outline strategies to bridge computational and experimental gaps, advocating for physics-informed models and high-throughput techniques to design next-generation BCC superalloys and motivate systematic studies on the misfit-property relationship in this nascent material class.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"267 ","pages":"Article 116802"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225002659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
BCC superalloys are a promising class of high-temperature materials with a wide range of lattice misfit values, ranging from near-zero to ∼8 %. Analogous to nickel superalloys, lattice misfit combined with elastic anisotropy dictates precipitate morphology (spherical, cuboidal, plate/needle-like), coarsening kinetics, strengthening mechanisms, and microstructure evolution, making misfit control critical for tailoring microstructural stability and creep resistance. However, misfit characterisation, especially at high temperatures, is still in its infancy to establish its links with mechanical properties. This perspective emphasises three aspects of BCC superalloys: representative misfit-driven microstructures and temperature-dependent misfit evolution, state-of-the-art diffraction techniques for high-temperature misfit quantification, and machine learning frameworks to accelerate alloy design involving misfit. By consolidating diverse misfit data and advanced characterisation/modelling strategies, we outline strategies to bridge computational and experimental gaps, advocating for physics-informed models and high-throughput techniques to design next-generation BCC superalloys and motivate systematic studies on the misfit-property relationship in this nascent material class.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.