{"title":"Galectin-4 potentiates CD8+ T cell immunity by enhancing MHC-I expression on dendritic cells: Therapeutic implications for cancer and viral infection.","authors":"In-Gu Lee,Jeonghyeon Lee,Hyeong-Rae Kim,Younghyun Lim,Hye-Won Yu,Tae-Hyung Kim,Bumsuk Hahm,Hyun Ah Kang,So-Hee Hong,Young-Jin Seo","doi":"10.1016/j.ymthe.2025.06.040","DOIUrl":null,"url":null,"abstract":"Galectin-4 (Gal-4), a member of the β-galactoside-binding galectin family, plays a role in various physiological processes, including tumor progression and intestinal disorders. However, its contribution to adaptive immunity remains poorly understood. In this study, Gal-4 is identified as a critical factor for effective generation of CD8+ T cell responses against tumors and viral infections. Gal-4-deficient mice exhibit significantly enhanced tumor growth in syngeneic mouse cancer models, attributed to impaired CD8+ T cell responses. Similarly, antiviral CD8+ T cell responses against lymphocytic choriomeningitis virus (LCMV) are profoundly diminished in Gal-4-deficient mice. This is not due to CD8+ T cell-intrinsic defects but instead linked to decreased surface expression of antigen-MHC-I complexes on dendritic cells. Building on these findings, the therapeutic potential of Gal-4 is investigated. Administration of Gal-4 enhances the efficacy of cancer vaccines and PD-1 blockade cancer therapy to improve outcomes in tumor-bearing mice. Additionally, systemic administration of Gal-4 markedly amplifies antiviral CD8+ T cell responses against LCMV. Collectively, these results underscore the pivotal role of Gal-4 in modulating CD8+ T cell immunity and highlight its promise as a therapeutic target for the development of novel immunotherapeutics against cancer and viral diseases.","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":"7 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.06.040","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Galectin-4 (Gal-4), a member of the β-galactoside-binding galectin family, plays a role in various physiological processes, including tumor progression and intestinal disorders. However, its contribution to adaptive immunity remains poorly understood. In this study, Gal-4 is identified as a critical factor for effective generation of CD8+ T cell responses against tumors and viral infections. Gal-4-deficient mice exhibit significantly enhanced tumor growth in syngeneic mouse cancer models, attributed to impaired CD8+ T cell responses. Similarly, antiviral CD8+ T cell responses against lymphocytic choriomeningitis virus (LCMV) are profoundly diminished in Gal-4-deficient mice. This is not due to CD8+ T cell-intrinsic defects but instead linked to decreased surface expression of antigen-MHC-I complexes on dendritic cells. Building on these findings, the therapeutic potential of Gal-4 is investigated. Administration of Gal-4 enhances the efficacy of cancer vaccines and PD-1 blockade cancer therapy to improve outcomes in tumor-bearing mice. Additionally, systemic administration of Gal-4 markedly amplifies antiviral CD8+ T cell responses against LCMV. Collectively, these results underscore the pivotal role of Gal-4 in modulating CD8+ T cell immunity and highlight its promise as a therapeutic target for the development of novel immunotherapeutics against cancer and viral diseases.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.