Ensemble Kalman methods: A mean-field perspective

IF 11.3 1区 数学 Q1 MATHEMATICS
Edoardo Calvello, Sebastian Reich, Andrew M. Stuart
{"title":"Ensemble Kalman methods: A mean-field perspective","authors":"Edoardo Calvello, Sebastian Reich, Andrew M. Stuart","doi":"10.1017/s0962492924000060","DOIUrl":null,"url":null,"abstract":"<p>Ensemble Kalman methods, introduced in 1994 in the context of ocean state estimation, are now widely used for state estimation and parameter estimation (inverse problems) in many arenae. Their success stems from the fact that they take an underlying computational model as a black box to provide a systematic, derivative-free methodology for incorporating observations; furthermore the ensemble approach allows for sensitivities and uncertainties to be calculated. Analysis of the accuracy of ensemble Kalman methods, especially in terms of uncertainty quantification, is lagging behind empirical success; this paper provides a unifying mean-field-based framework for their analysis. Both state estimation and parameter estimation problems are considered, and formulations in both discrete and continuous time are employed. For state estimation problems, both the control and filtering approaches are considered; analogously for parameter estimation problems, the optimization and Bayesian perspectives are both studied. As well as providing an elegant framework, the mean-field perspective also allows for the derivation of a variety of methods used in practice. In addition it unifies a wide-ranging literature in the field and suggests open problems.</p>","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"19 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0962492924000060","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble Kalman methods, introduced in 1994 in the context of ocean state estimation, are now widely used for state estimation and parameter estimation (inverse problems) in many arenae. Their success stems from the fact that they take an underlying computational model as a black box to provide a systematic, derivative-free methodology for incorporating observations; furthermore the ensemble approach allows for sensitivities and uncertainties to be calculated. Analysis of the accuracy of ensemble Kalman methods, especially in terms of uncertainty quantification, is lagging behind empirical success; this paper provides a unifying mean-field-based framework for their analysis. Both state estimation and parameter estimation problems are considered, and formulations in both discrete and continuous time are employed. For state estimation problems, both the control and filtering approaches are considered; analogously for parameter estimation problems, the optimization and Bayesian perspectives are both studied. As well as providing an elegant framework, the mean-field perspective also allows for the derivation of a variety of methods used in practice. In addition it unifies a wide-ranging literature in the field and suggests open problems.

集合卡尔曼方法:平均场视角
集合卡尔曼方法于1994年在海洋状态估计的背景下被引入,现在被广泛用于许多领域的状态估计和参数估计(逆问题)。他们的成功源于这样一个事实:他们把一个潜在的计算模型作为一个黑箱,为合并观察提供了一个系统的、无导数的方法;此外,集合方法允许计算灵敏度和不确定度。对集合卡尔曼方法的精度分析,特别是在不确定性量化方面,滞后于经验的成功;本文提供了一个统一的基于平均场的分析框架。同时考虑了状态估计和参数估计问题,并采用了离散时间和连续时间的计算公式。对于状态估计问题,考虑了控制和滤波两种方法;类似地,对于参数估计问题,优化和贝叶斯观点都进行了研究。除了提供一个优雅的框架外,平均场视角还允许推导出实践中使用的各种方法。此外,它统一了该领域广泛的文献,并提出了开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Numerica
Acta Numerica MATHEMATICS-
CiteScore
26.00
自引率
0.70%
发文量
7
期刊介绍: Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses. Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信