Dynamic mechanical writing of skyrmion-like polar nanodomains

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jaegyu Kim, Youngki Yeo, Yong-Jun Kwon, Juhyun Lee, Jeongdae Seo, Seungbum Hong, Chan-Ho Yang
{"title":"Dynamic mechanical writing of skyrmion-like polar nanodomains","authors":"Jaegyu Kim, Youngki Yeo, Yong-Jun Kwon, Juhyun Lee, Jeongdae Seo, Seungbum Hong, Chan-Ho Yang","doi":"10.1038/s41535-025-00781-4","DOIUrl":null,"url":null,"abstract":"<p>Ferroelectric materials exhibit a wealth of topological polar structures that hold promise for high-density, energy-efficient information technologies. Ferroelectric polarization configurations can be flipped by non-uniform mechanical stresses and associated lattice deformations and can be understood in the quasi-static regime based on flexoelectricity, but little is known about the dynamic mechanical excitations that generate topological ferroelectric structures. Here, we discover stable centre-type skyrmion-like polar nanodomains in super-tetragonal BiFeO<sub>3</sub> thin films generated by vibrational tapping using scanning probe microscope tips. Vibrational tapping can bidirectionally switch out-of-plane polarization by exerting strong dynamic force onto the elastically soft state emerging from strain-driven morphotropic phase transitions, which may be attributed to unconventional non-linear flexoelectric effects in the large strain-gradient regime. Our study provides a novel pathway into not only dynamic mechanoelectric coupling and topological polar structures, but also dynamic mechanical excitation technologies applicable to various fields.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"11 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00781-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric materials exhibit a wealth of topological polar structures that hold promise for high-density, energy-efficient information technologies. Ferroelectric polarization configurations can be flipped by non-uniform mechanical stresses and associated lattice deformations and can be understood in the quasi-static regime based on flexoelectricity, but little is known about the dynamic mechanical excitations that generate topological ferroelectric structures. Here, we discover stable centre-type skyrmion-like polar nanodomains in super-tetragonal BiFeO3 thin films generated by vibrational tapping using scanning probe microscope tips. Vibrational tapping can bidirectionally switch out-of-plane polarization by exerting strong dynamic force onto the elastically soft state emerging from strain-driven morphotropic phase transitions, which may be attributed to unconventional non-linear flexoelectric effects in the large strain-gradient regime. Our study provides a novel pathway into not only dynamic mechanoelectric coupling and topological polar structures, but also dynamic mechanical excitation technologies applicable to various fields.

Abstract Image

类skyrmion极性纳米畴的动态机械书写
铁电材料表现出丰富的拓扑极性结构,有望实现高密度、节能的信息技术。铁电极化结构可以通过非均匀机械应力和相关的晶格变形而翻转,并且可以在基于柔性电的准静态状态下理解,但对于产生拓扑铁电结构的动态机械激励知之甚少。在这里,我们发现了稳定的中心型skyrmion-like极性纳米畴在超四边形BiFeO3薄膜由振动轻敲产生的扫描探针显微镜尖端。振动攻丝可以通过对应变驱动的形态相变产生的弹性软态施加强大的动力来双向切换面外极化,这可能是由于大应变梯度下非常规的非线性挠曲电效应。我们的研究不仅为动态机电耦合和拓扑极性结构提供了新的途径,而且为应用于各个领域的动态机械激励技术提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信