Superconducting phase diagram of finite-layer nickelates Ndn+1NinO2n+2

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Andreas Hausoel, Simone Di Cataldo, Motoharu Kitatani, Oleg Janson, Karsten Held
{"title":"Superconducting phase diagram of finite-layer nickelates Ndn+1NinO2n+2","authors":"Andreas Hausoel, Simone Di Cataldo, Motoharu Kitatani, Oleg Janson, Karsten Held","doi":"10.1038/s41535-025-00786-z","DOIUrl":null,"url":null,"abstract":"<p>Following the successful prediction of the superconducting phase diagram for infinite-layer nickelates, here we calculate the superconducting <i>T</i><sub>c</sub> vs. the number of layers <i>n</i> for finite-layer nickelates using the dynamical vertex approximation. To this end, we start with density functional theory, and include local correlations non-perturbatively by dynamical mean-field theory for <i>n</i> = 2–7. For all <i>n</i>, the Ni <span>\\({d}_{{x}^{2}-{y}^{2}}\\)</span> orbital crosses the Fermi level, but for <i>n</i> &gt; 4 there are additional (<i>π</i>, <i>π</i>) pockets or tubes that slightly enhance the layer-averaged hole doping of the <span>\\({d}_{{x}^{2}-{y}^{2}}\\)</span> orbitals beyond the leading 1/<i>n</i> contribution stemming from the valence electron count. We finally calculate <i>T</i><sub>c</sub> for the single-orbital <span>\\({d}_{{x}^{2}-{y}^{2}}\\)</span> Hubbard model by dynamical vertex approximation.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"8 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00786-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Following the successful prediction of the superconducting phase diagram for infinite-layer nickelates, here we calculate the superconducting Tc vs. the number of layers n for finite-layer nickelates using the dynamical vertex approximation. To this end, we start with density functional theory, and include local correlations non-perturbatively by dynamical mean-field theory for n = 2–7. For all n, the Ni \({d}_{{x}^{2}-{y}^{2}}\) orbital crosses the Fermi level, but for n > 4 there are additional (π, π) pockets or tubes that slightly enhance the layer-averaged hole doping of the \({d}_{{x}^{2}-{y}^{2}}\) orbitals beyond the leading 1/n contribution stemming from the valence electron count. We finally calculate Tc for the single-orbital \({d}_{{x}^{2}-{y}^{2}}\) Hubbard model by dynamical vertex approximation.

Abstract Image

有限层镍酸盐Ndn+1NinO2n+2超导相图
在成功预测了无限层镍酸盐的超导相图之后,我们在这里使用动态顶点近似计算了有限层镍酸盐的超导Tc与层数n的关系。为此,我们从密度泛函理论出发,并通过动力学平均场理论包括n = 2-7的非摄动局部相关。对于所有n, Ni \({d}_{{x}^{2}-{y}^{2}}\)轨道穿过费米能级,但对于n &gt; 4,有额外的(π, π)口袋或管,这些口袋或管略微增强了\({d}_{{x}^{2}-{y}^{2}}\)轨道的层平均空穴掺杂,超出了由价电子计数产生的1/n的主要贡献。最后,我们用动态顶点逼近法计算了单轨道\({d}_{{x}^{2}-{y}^{2}}\) Hubbard模型的Tc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信