Unusual 5f magnetism in new kagome material UV6Sn6

IF 6.2 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. M. Thomas, C. S. Kengle, W. Simeth, Chan-young Lim, Z. W. Riedel, K. Allen, A. Schmidt, M. Ruf, Seonggeon Gim, J. D. Thompson, F. Ronning, A. O. Scheie, C. Lane, J. D. Denlinger, S. Blanco-Canosa, Jian-Xin Zhu, E. D. Bauer, P. F. S. Rosa
{"title":"Unusual 5f magnetism in new kagome material UV6Sn6","authors":"S. M. Thomas, C. S. Kengle, W. Simeth, Chan-young Lim, Z. W. Riedel, K. Allen, A. Schmidt, M. Ruf, Seonggeon Gim, J. D. Thompson, F. Ronning, A. O. Scheie, C. Lane, J. D. Denlinger, S. Blanco-Canosa, Jian-Xin Zhu, E. D. Bauer, P. F. S. Rosa","doi":"10.1038/s41535-025-00783-2","DOIUrl":null,"url":null,"abstract":"<p>Materials in the family <i>R</i>V<sub>6</sub>Sn<sub>6</sub> (<i>R</i> = rare earth) provide a unique platform to investigate the interplay between local moments from <i>R</i> layers and nonmagnetic vanadium kagome layers. Yet, the investigation of actinide members remains scarce. Here we report the synthesis of UV<sub>6</sub>Sn<sub>6</sub> single crystals through the self-flux technique. Physical property measurements reveal two uranium-driven antiferromagnetic transitions at <i>T</i><sub><i>N</i>1</sub> = 29 K and <i>T</i><sub><i>N</i>2</sub> = 24 K, a complex field-temperature phase diagram, and unusual negative domain-wall magnetoresistance. Specific heat and angle-resolved photoemission spectroscopy measurements show a moderate <i>f</i>-electron enhancement to the density of states at the Fermi level (<i>E</i><sub><i>F</i></sub>), whereas our band structure calculations place the vanadium flat bands 0.25 eV above <i>E</i><sub><i>F</i></sub>. These findings point to a materials opportunity to expand the uranium 166 family with the goal of enhancing correlations by tuning 5<i>f</i> and 3<i>d</i> flat bands to <i>E</i><sub><i>F</i></sub>.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"47 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00783-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Materials in the family RV6Sn6 (R = rare earth) provide a unique platform to investigate the interplay between local moments from R layers and nonmagnetic vanadium kagome layers. Yet, the investigation of actinide members remains scarce. Here we report the synthesis of UV6Sn6 single crystals through the self-flux technique. Physical property measurements reveal two uranium-driven antiferromagnetic transitions at TN1 = 29 K and TN2 = 24 K, a complex field-temperature phase diagram, and unusual negative domain-wall magnetoresistance. Specific heat and angle-resolved photoemission spectroscopy measurements show a moderate f-electron enhancement to the density of states at the Fermi level (EF), whereas our band structure calculations place the vanadium flat bands 0.25 eV above EF. These findings point to a materials opportunity to expand the uranium 166 family with the goal of enhancing correlations by tuning 5f and 3d flat bands to EF.

Abstract Image

新kagome材料UV6Sn6的异常磁性
RV6Sn6族材料(R =稀土)为研究R层和非磁性钒kagome层的局部力矩之间的相互作用提供了一个独特的平台。然而,对锕系元素的研究仍然很少。本文报道了利用自通量技术合成UV6Sn6单晶的方法。物理性质测量显示在TN1 = 29 K和TN2 = 24 K处有两个铀驱动的反铁磁转变,一个复杂的场温相图,以及不寻常的负畴壁磁阻。比热和角分辨光发射光谱测量表明,在费米能级(EF)上,f电子对态密度有适度的增强,而我们的能带结构计算将钒的平面能带置于0.25 eV以上。这些发现指出了扩大铀166家族的材料机会,其目标是通过将5f和3d平坦带调谐到EF来增强相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信