Luana Lastella, Marco Zecca, Paolo Centomo, Karel Jeřábek, Fernando Formaggio, Ivan Guryanov, Antonio Ricci, Barbara Biondi
{"title":"Toward a Green SPPS: The Use of an Innovative Mesoporous pDVB Support for Environmentally Friendly Solvents","authors":"Luana Lastella, Marco Zecca, Paolo Centomo, Karel Jeřábek, Fernando Formaggio, Ivan Guryanov, Antonio Ricci, Barbara Biondi","doi":"10.1002/psc.70038","DOIUrl":null,"url":null,"abstract":"<p>This study explores the use of a novel polymeric mesoporous support (pDVB) for solid-phase peptide synthesis (SPPS), with the aim of improving the efficiency and sustainability of the process. The pDVB support, functionalized with the Fmoc-Rink amide linker, offers advantages over conventional supports based on gel-type, lightly crosslinked polymer skeletons, particularly with regard to reduced reliance on swelling capacity, which allows the use of a wider range of solvents. The work focuses on <i>greener</i> and eco-friendly solvents such as TEP, ACN, IPA, and their mixtures with DMSO to replace toxic solvents such as DMF. The synthesis of two model peptide sequences, Fmoc-LLVF-NH<sub>2</sub> and ACP(65–74), showed that pDVB-Rink performs better than a conventional-type Rink Amide MBHA support, especially when using environmentally friendly solvents. These results suggest that mesoporous pDVB-Rink is a promising solid support for SPPS to reduce the use of toxic solvents and to improve sustainability.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the use of a novel polymeric mesoporous support (pDVB) for solid-phase peptide synthesis (SPPS), with the aim of improving the efficiency and sustainability of the process. The pDVB support, functionalized with the Fmoc-Rink amide linker, offers advantages over conventional supports based on gel-type, lightly crosslinked polymer skeletons, particularly with regard to reduced reliance on swelling capacity, which allows the use of a wider range of solvents. The work focuses on greener and eco-friendly solvents such as TEP, ACN, IPA, and their mixtures with DMSO to replace toxic solvents such as DMF. The synthesis of two model peptide sequences, Fmoc-LLVF-NH2 and ACP(65–74), showed that pDVB-Rink performs better than a conventional-type Rink Amide MBHA support, especially when using environmentally friendly solvents. These results suggest that mesoporous pDVB-Rink is a promising solid support for SPPS to reduce the use of toxic solvents and to improve sustainability.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.