Thermodynamics of the condensation of the Si8O20(SnMe3)8 building block with M–X (M = B, Al, Si, P, Ti, V, Zn, Sn, Sb, X = Cl, Me, Et) precursors by DFT-D3 calculations†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-05-29 DOI:10.1039/D5CE00160A
Martin Kejik, Hugo Semrad, Ales Styskalik and Jiri Pinkas
{"title":"Thermodynamics of the condensation of the Si8O20(SnMe3)8 building block with M–X (M = B, Al, Si, P, Ti, V, Zn, Sn, Sb, X = Cl, Me, Et) precursors by DFT-D3 calculations†","authors":"Martin Kejik, Hugo Semrad, Ales Styskalik and Jiri Pinkas","doi":"10.1039/D5CE00160A","DOIUrl":null,"url":null,"abstract":"<p >Synthesis of porous metallosilicate materials from siloxane oligomers is a promising approach for constructing well-defined structures at a molecular level. Here, we use quantum chemistry DFT methods and demonstrate a computationally cheap method for screening potential precursors for synthesizing porous metallosilicates. We estimate the thermodynamic parameters of condensation reactions of the octakis(trimethyltin)spherosilicate Si<small><sub>8</sub></small>O<small><sub>20</sub></small>(SnMe<small><sub>3</sub></small>)<small><sub>8</sub></small> (CUBE) building block with metal chlorides and alkyl metals. These reactions represent the initial steps in the non-hydrolytic synthesis of metallosilicate gels containing potentially uniform single-site metal centers. Our main emphasis was on the spontaneity and irreversibility of the condensation and the computational screening of potential metal center sources. The precursors previously reported in successful condensations with CUBE, such as AlCl<small><sub>3</sub></small>, [AlCl<small><sub>4</sub></small>]<small><sup>−</sup></small>, Si–Cl compounds, PCl<small><sub>3</sub></small>, TiCl<small><sub>4</sub></small>, and VOCl<small><sub>3</sub></small>, are shown to undergo sufficiently irreversible reactions, as are the untested precursors BCl<small><sub>3</sub></small>, VCl<small><sub>4</sub></small>, and POCl<small><sub>3</sub></small>. Interestingly, AlMe<small><sub>3</sub></small> proves to be twice as exoergic as AlCl<small><sub>3</sub></small>. The first chloride in Cp<small><sub>2</sub></small>TiCl<small><sub>2</sub></small> reacts readily, but the second may be partially reversible. SbCl<small><sub>3</sub></small> and Ph<small><sub>3</sub></small>SbCl<small><sub>2</sub></small> are borderline cases, and the reversibility of their condensations might pose a problem. SnCl<small><sub>4</sub></small> was found unsuitable as a precursor to stannosilicates. It should be possible to prepare zincosilicates from ZnEt<small><sub>2</sub></small>, but not from ZnCl<small><sub>2</sub></small>, as the affinity of Zn for Cl<small><sup>−</sup></small> is so high that in the presence of a source of Cl<small><sup>−</sup></small>, zincosilicate structures will dissolve back to CUBE and ZnCl<small><sub>2</sub></small>. The oxophilicity of the metal in the precursor is the main factor in the driving force for the condensation with CUBE. Alkyl metals and lighter elements are more prone to the reaction than the corresponding metal chlorides and heavier analogs. The propensity of [SnMe<small><sub>3</sub></small>]<small><sup>+</sup></small> to bind to Cl<small><sup>−</sup></small> in preference to CUBE has a supporting effect. At low temperatures, the condensation is slightly disfavored, while at the experimentally used temperature of 100 °C, this process contributes over 20 kJ mol<small><sup>−1</sup></small> of the additional driving force and helps to complete the condensation. The reliability of B3LYP-D3 and PBE0-D3, together with the CBS extrapolation scheme, is also evaluated in calculations.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 26","pages":" 4568-4581"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00160a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00160a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesis of porous metallosilicate materials from siloxane oligomers is a promising approach for constructing well-defined structures at a molecular level. Here, we use quantum chemistry DFT methods and demonstrate a computationally cheap method for screening potential precursors for synthesizing porous metallosilicates. We estimate the thermodynamic parameters of condensation reactions of the octakis(trimethyltin)spherosilicate Si8O20(SnMe3)8 (CUBE) building block with metal chlorides and alkyl metals. These reactions represent the initial steps in the non-hydrolytic synthesis of metallosilicate gels containing potentially uniform single-site metal centers. Our main emphasis was on the spontaneity and irreversibility of the condensation and the computational screening of potential metal center sources. The precursors previously reported in successful condensations with CUBE, such as AlCl3, [AlCl4], Si–Cl compounds, PCl3, TiCl4, and VOCl3, are shown to undergo sufficiently irreversible reactions, as are the untested precursors BCl3, VCl4, and POCl3. Interestingly, AlMe3 proves to be twice as exoergic as AlCl3. The first chloride in Cp2TiCl2 reacts readily, but the second may be partially reversible. SbCl3 and Ph3SbCl2 are borderline cases, and the reversibility of their condensations might pose a problem. SnCl4 was found unsuitable as a precursor to stannosilicates. It should be possible to prepare zincosilicates from ZnEt2, but not from ZnCl2, as the affinity of Zn for Cl is so high that in the presence of a source of Cl, zincosilicate structures will dissolve back to CUBE and ZnCl2. The oxophilicity of the metal in the precursor is the main factor in the driving force for the condensation with CUBE. Alkyl metals and lighter elements are more prone to the reaction than the corresponding metal chlorides and heavier analogs. The propensity of [SnMe3]+ to bind to Cl in preference to CUBE has a supporting effect. At low temperatures, the condensation is slightly disfavored, while at the experimentally used temperature of 100 °C, this process contributes over 20 kJ mol−1 of the additional driving force and helps to complete the condensation. The reliability of B3LYP-D3 and PBE0-D3, together with the CBS extrapolation scheme, is also evaluated in calculations.

Abstract Image

用DFT-D3计算方法研究了Si8O20(SnMe3)8与M - X (M = B, Al, Si, P, Ti, V, Zn, Sn, Sb, X = Cl, Me, Et)前驱体的缩合热力学
从硅氧烷低聚物合成多孔金属硅酸盐材料是一种在分子水平上构建明确结构的有前途的方法。在这里,我们使用量子化学DFT方法并展示了一种计算廉价的方法来筛选合成多孔金属硅酸盐的潜在前体。研究了八晶(三甲基锡)球硅酸盐Si8O20(SnMe3)8 (CUBE)与金属氯化物和烷基金属的缩合反应热力学参数。这些反应代表了非水解合成含有可能均匀的单点金属中心的金属硅酸盐凝胶的初始步骤。我们的主要重点是冷凝的自发性和不可逆性以及潜在金属中心源的计算筛选。先前报道的与CUBE成功缩合的前驱体,如AlCl3、[AlCl4]−、Si-Cl化合物、PCl3、TiCl4和VOCl3,显示出充分的不可逆反应,未测试的前驱体BCl3、VCl4和POCl3也是如此。有趣的是,AlMe3被证明是AlCl3的两倍。Cp2TiCl2中的第一氯很容易反应,但第二氯可能部分可逆。SbCl3和Ph3SbCl2是临界情况,它们的缩合的可逆性可能是一个问题。发现SnCl4不适合作为锡硅酸盐的前体。用ZnEt2可以制备硅酸锌,但不能用ZnCl2,因为锌对Cl−的亲和力很高,在Cl−源存在的情况下,硅酸锌结构会溶解回CUBE和ZnCl2。前驱体中金属的亲氧性是与CUBE发生缩合的主要驱动力。烷基金属和较轻的元素比相应的金属氯化物和较重的类似物更容易发生反应。[SnMe3]+倾向于与Cl−结合而不是与CUBE结合具有支持作用。在低温条件下,该过程略微不利于缩合,而在实验使用的温度为100℃时,该过程贡献了超过20 kJ mol−1的额外驱动力,有助于完成缩合。计算中还对B3LYP-D3和PBE0-D3以及CBS外推方案的可靠性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信