MD Nazmul Hossain Mir;Arindam Kishor Biswas;Md Shariful Alam Bhuiyan;Md. Golam Rabbani Abir;M. F. Mridha;Md. Jakir Hossen
{"title":"ABMF-Net: An Attentive Bayesian Multi-Stage Deep Learning Model for Robust Forecasting of Electricity Price and Demand","authors":"MD Nazmul Hossain Mir;Arindam Kishor Biswas;Md Shariful Alam Bhuiyan;Md. Golam Rabbani Abir;M. F. Mridha;Md. Jakir Hossen","doi":"10.1109/OJCS.2025.3579522","DOIUrl":null,"url":null,"abstract":"This article presents a novel deep learning model, the Attentive Bayesian Multi-Stage Forecasting Network (ABMF-Net), designed for robust forecasting of electricity price (USD/MWh) and demand (MW). The model incorporates an attention-based data selection mechanism, an encoder-decoder structure with masked time-series prediction, and a Bayesian neural network to generate both point and interval forecasts. Furthermore, a multi-objective Salp Swarm Algorithm (MSSA) is used to optimize forecasting accuracy and stability. Experimental evaluation on four real-world datasets from the Australian electricity market demonstrates that ABMF-Net achieves a MAPE as low as 1.89%, MAE of 0.67, RMSE of 0.98, and FICP of 0.98, outperforming LSTM, GRU, and Transformer models. Seasonal evaluations confirm the model’s robustness across high-variability conditions. These results position ABMF-Net as a high-performing and reliable forecasting model for modern electricity markets.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"896-907"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11034710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11034710/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a novel deep learning model, the Attentive Bayesian Multi-Stage Forecasting Network (ABMF-Net), designed for robust forecasting of electricity price (USD/MWh) and demand (MW). The model incorporates an attention-based data selection mechanism, an encoder-decoder structure with masked time-series prediction, and a Bayesian neural network to generate both point and interval forecasts. Furthermore, a multi-objective Salp Swarm Algorithm (MSSA) is used to optimize forecasting accuracy and stability. Experimental evaluation on four real-world datasets from the Australian electricity market demonstrates that ABMF-Net achieves a MAPE as low as 1.89%, MAE of 0.67, RMSE of 0.98, and FICP of 0.98, outperforming LSTM, GRU, and Transformer models. Seasonal evaluations confirm the model’s robustness across high-variability conditions. These results position ABMF-Net as a high-performing and reliable forecasting model for modern electricity markets.