ABMF-Net: An Attentive Bayesian Multi-Stage Deep Learning Model for Robust Forecasting of Electricity Price and Demand

MD Nazmul Hossain Mir;Arindam Kishor Biswas;Md Shariful Alam Bhuiyan;Md. Golam Rabbani Abir;M. F. Mridha;Md. Jakir Hossen
{"title":"ABMF-Net: An Attentive Bayesian Multi-Stage Deep Learning Model for Robust Forecasting of Electricity Price and Demand","authors":"MD Nazmul Hossain Mir;Arindam Kishor Biswas;Md Shariful Alam Bhuiyan;Md. Golam Rabbani Abir;M. F. Mridha;Md. Jakir Hossen","doi":"10.1109/OJCS.2025.3579522","DOIUrl":null,"url":null,"abstract":"This article presents a novel deep learning model, the Attentive Bayesian Multi-Stage Forecasting Network (ABMF-Net), designed for robust forecasting of electricity price (USD/MWh) and demand (MW). The model incorporates an attention-based data selection mechanism, an encoder-decoder structure with masked time-series prediction, and a Bayesian neural network to generate both point and interval forecasts. Furthermore, a multi-objective Salp Swarm Algorithm (MSSA) is used to optimize forecasting accuracy and stability. Experimental evaluation on four real-world datasets from the Australian electricity market demonstrates that ABMF-Net achieves a MAPE as low as 1.89%, MAE of 0.67, RMSE of 0.98, and FICP of 0.98, outperforming LSTM, GRU, and Transformer models. Seasonal evaluations confirm the model’s robustness across high-variability conditions. These results position ABMF-Net as a high-performing and reliable forecasting model for modern electricity markets.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"896-907"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11034710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11034710/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel deep learning model, the Attentive Bayesian Multi-Stage Forecasting Network (ABMF-Net), designed for robust forecasting of electricity price (USD/MWh) and demand (MW). The model incorporates an attention-based data selection mechanism, an encoder-decoder structure with masked time-series prediction, and a Bayesian neural network to generate both point and interval forecasts. Furthermore, a multi-objective Salp Swarm Algorithm (MSSA) is used to optimize forecasting accuracy and stability. Experimental evaluation on four real-world datasets from the Australian electricity market demonstrates that ABMF-Net achieves a MAPE as low as 1.89%, MAE of 0.67, RMSE of 0.98, and FICP of 0.98, outperforming LSTM, GRU, and Transformer models. Seasonal evaluations confirm the model’s robustness across high-variability conditions. These results position ABMF-Net as a high-performing and reliable forecasting model for modern electricity markets.
ABMF-Net:用于电力价格和需求稳健预测的贝叶斯多阶段深度学习模型
本文提出了一种新颖的深度学习模型,即细心贝叶斯多阶段预测网络(ABMF-Net),旨在对电价(美元/兆瓦时)和需求(兆瓦)进行稳健预测。该模型结合了基于注意力的数据选择机制、具有掩模时间序列预测的编码器-解码器结构以及生成点和区间预测的贝叶斯神经网络。在此基础上,采用多目标Salp群算法(MSSA)优化预测精度和稳定性。对来自澳大利亚电力市场的四个真实数据集的实验评估表明,ABMF-Net的MAPE低至1.89%,MAE为0.67,RMSE为0.98,FICP为0.98,优于LSTM, GRU和Transformer模型。季节性评估证实了该模型在高变异性条件下的稳健性。这些结果使ABMF-Net成为现代电力市场的一个高性能和可靠的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信