Rodrigues D. Dikandé Bitha , Andrus Giraldo , Neil G.R. Broderick , Bernd Krauskopf
{"title":"A kneading diagram of chaotic switching oscillations in a Kerr cavity with two interacting light fields","authors":"Rodrigues D. Dikandé Bitha , Andrus Giraldo , Neil G.R. Broderick , Bernd Krauskopf","doi":"10.1016/j.physd.2025.134814","DOIUrl":null,"url":null,"abstract":"<div><div>Optical systems that combine nonlinearity with coupling between various subsystems offer a flexible platform for observing a diverse range of nonlinear dynamics. Furthermore, engineering tolerances are such that the subsystems can be identical to within a fraction of the wavelength of light; hence, such coupled systems inherently have a natural symmetry that can lead to either delocalization or symmetry breaking. We consider here an optical Kerr cavity that supports two interacting electric fields, generated by two symmetric input beams. Mathematically, this system is modeled by a four-dimensional <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant vector field with the strength and detuning of the input light as control parameters. Previous research has shown that complex switching dynamics are observed both experimentally and numerically across a wide range of parameter values. Here, we show that particular switching patterns are created at specific global bifurcations through either delocalization or symmetry breaking of a chaotic attractor. We find that the system exhibits infinitely many of these global bifurcations, which are organized by <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant codimension-two Belyakov transitions. We investigate these switching dynamics by means of the continuation of global bifurcations in combination with the computation of kneading invariants and Lyapunov exponents. In this way, we provide a comprehensive picture of the interplay between different switching patterns of periodic orbits and chaotic attractors.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134814"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892500291X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Optical systems that combine nonlinearity with coupling between various subsystems offer a flexible platform for observing a diverse range of nonlinear dynamics. Furthermore, engineering tolerances are such that the subsystems can be identical to within a fraction of the wavelength of light; hence, such coupled systems inherently have a natural symmetry that can lead to either delocalization or symmetry breaking. We consider here an optical Kerr cavity that supports two interacting electric fields, generated by two symmetric input beams. Mathematically, this system is modeled by a four-dimensional -equivariant vector field with the strength and detuning of the input light as control parameters. Previous research has shown that complex switching dynamics are observed both experimentally and numerically across a wide range of parameter values. Here, we show that particular switching patterns are created at specific global bifurcations through either delocalization or symmetry breaking of a chaotic attractor. We find that the system exhibits infinitely many of these global bifurcations, which are organized by -equivariant codimension-two Belyakov transitions. We investigate these switching dynamics by means of the continuation of global bifurcations in combination with the computation of kneading invariants and Lyapunov exponents. In this way, we provide a comprehensive picture of the interplay between different switching patterns of periodic orbits and chaotic attractors.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.