An integrated deep learning approach for predictive vehicle maintenance

Abderrachid Errezgouny , Youness Chater , Carlos D. Barranco González , Abdeljabbar Cherkaoui
{"title":"An integrated deep learning approach for predictive vehicle maintenance","authors":"Abderrachid Errezgouny ,&nbsp;Youness Chater ,&nbsp;Carlos D. Barranco González ,&nbsp;Abdeljabbar Cherkaoui","doi":"10.1016/j.dajour.2025.100597","DOIUrl":null,"url":null,"abstract":"<div><div>In the automotive sector, vehicle data gathered through On-board Diagnostics (OBD) systems offers continuous insights into vehicle health status and performance. Leveraging this data for predictive maintenance can significantly reduce unplanned failures, enhance safety, and extend vehicle lifespan. This paper proposes a novel hybrid model for Predictive Maintenance (PdM), that integrates Long Short-Term Memory (LSTM) neural networks with K-means clustering to analyze unlabeled time-series data from OBD systems. Our main contribution is to integrate an unsupervised deep learning approach that effectively captures temporal dependencies and clusters operational patterns to predict engine condition with high accuracy, addressing the common challenge of unlabeled vehicle datasets. The model achieves state-of-the-art prediction performance with a 97.5% R<sup>2</sup> score of the selected feature, demonstrating its strong generalization and reliability in different domain applications. Compared to standalone LSTM, Gated Recurrent Units (GRUs) and Recurrent Neural Networks (RNNs) models, our hybrid approach outperforms traditional methods across all tested metrics, marking a significant advancement in predictive maintenance for vehicular systems. This work paves the way for smarter, real-time diagnostics in next-generation vehicles.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"16 ","pages":"Article 100597"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the automotive sector, vehicle data gathered through On-board Diagnostics (OBD) systems offers continuous insights into vehicle health status and performance. Leveraging this data for predictive maintenance can significantly reduce unplanned failures, enhance safety, and extend vehicle lifespan. This paper proposes a novel hybrid model for Predictive Maintenance (PdM), that integrates Long Short-Term Memory (LSTM) neural networks with K-means clustering to analyze unlabeled time-series data from OBD systems. Our main contribution is to integrate an unsupervised deep learning approach that effectively captures temporal dependencies and clusters operational patterns to predict engine condition with high accuracy, addressing the common challenge of unlabeled vehicle datasets. The model achieves state-of-the-art prediction performance with a 97.5% R2 score of the selected feature, demonstrating its strong generalization and reliability in different domain applications. Compared to standalone LSTM, Gated Recurrent Units (GRUs) and Recurrent Neural Networks (RNNs) models, our hybrid approach outperforms traditional methods across all tested metrics, marking a significant advancement in predictive maintenance for vehicular systems. This work paves the way for smarter, real-time diagnostics in next-generation vehicles.
预测性车辆维修的集成深度学习方法
在汽车行业,通过车载诊断(OBD)系统收集的车辆数据可以持续了解车辆的健康状态和性能。利用这些数据进行预测性维护可以显著减少计划外故障,提高安全性并延长车辆寿命。本文提出了一种新的预测性维护(PdM)混合模型,该模型将长短期记忆(LSTM)神经网络与K-means聚类相结合,用于分析来自OBD系统的未标记时间序列数据。我们的主要贡献是集成了一种无监督的深度学习方法,该方法可以有效地捕获时间依赖性和聚类操作模式,从而高精度地预测发动机状况,解决了未标记车辆数据集的共同挑战。该模型达到了最先进的预测性能,所选特征的R2得分为97.5%,显示了其在不同领域应用中的强泛化和可靠性。与独立LSTM、门控循环单元(gru)和循环神经网络(rnn)模型相比,我们的混合方法在所有测试指标上都优于传统方法,标志着车辆系统预测性维护的重大进步。这项工作为下一代车辆的智能实时诊断铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信