Adaptive decoupled strategy for robust and efficient low-rank matrix decomposition

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Min Gan , Peng Xue , Fan Zhang , Xiang-Xiang Su , Xin Lin , Guang-Yong Chen
{"title":"Adaptive decoupled strategy for robust and efficient low-rank matrix decomposition","authors":"Min Gan ,&nbsp;Peng Xue ,&nbsp;Fan Zhang ,&nbsp;Xiang-Xiang Su ,&nbsp;Xin Lin ,&nbsp;Guang-Yong Chen","doi":"10.1016/j.neucom.2025.130656","DOIUrl":null,"url":null,"abstract":"<div><div>Low-rank matrix decomposition with missing values is vital in computer vision and pattern recognition, yet it presents significant challenges. This problem can be viewed as a separable nonlinear optimization, but traditional methods often fail to account for the coupling between parameters and the impact of solution properties on visual reconstruction. We observe that such separable nonlinear problems frequently encounters narrow ravines filled with sharp minima. Classic alternating optimization methods, the Wiberg algorithm and its variants tend to linger in these regions, converging to sharp minima, thereby slowing convergence and degrading reconstruction quality. This promotes us to introduce the Adaptive Decoupled Variable Projection algorithm (ADVP), which can adaptively handle the coupling of parameters, significantly accelerate the convergence rate, and dynamically adjust the parameter search subspace, helping algorithms avoid these ravines towards flatter local minima. These flat minima exhibit robustness against missing data, noise, and outliers, enhancing the quality of visual reconstruction. Extensive experiments on synthetic and real datasets have validated the efficiency of ADVP and its superior performance in visual reconstruction.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"649 ","pages":"Article 130656"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225013281","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Low-rank matrix decomposition with missing values is vital in computer vision and pattern recognition, yet it presents significant challenges. This problem can be viewed as a separable nonlinear optimization, but traditional methods often fail to account for the coupling between parameters and the impact of solution properties on visual reconstruction. We observe that such separable nonlinear problems frequently encounters narrow ravines filled with sharp minima. Classic alternating optimization methods, the Wiberg algorithm and its variants tend to linger in these regions, converging to sharp minima, thereby slowing convergence and degrading reconstruction quality. This promotes us to introduce the Adaptive Decoupled Variable Projection algorithm (ADVP), which can adaptively handle the coupling of parameters, significantly accelerate the convergence rate, and dynamically adjust the parameter search subspace, helping algorithms avoid these ravines towards flatter local minima. These flat minima exhibit robustness against missing data, noise, and outliers, enhancing the quality of visual reconstruction. Extensive experiments on synthetic and real datasets have validated the efficiency of ADVP and its superior performance in visual reconstruction.
鲁棒高效低秩矩阵分解的自适应解耦策略
缺失值的低秩矩阵分解在计算机视觉和模式识别中具有重要意义,但也面临着重大挑战。这个问题可以看作是一个可分离的非线性优化问题,但传统的方法往往不能考虑参数之间的耦合以及解的性质对视觉重建的影响。我们观察到这种可分离的非线性问题经常遇到充满尖锐极小值的狭窄沟壑。经典的交替优化方法,Wiberg算法及其变体往往停留在这些区域,收敛到锐极小值,从而减慢收敛速度,降低重建质量。这促使我们引入自适应解耦变量投影算法(ADVP),该算法可以自适应处理参数耦合,显著加快收敛速度,并动态调整参数搜索子空间,帮助算法避免这些沟槽,从而趋向平坦的局部最小值。这些平面最小值对缺失数据、噪声和异常值具有鲁棒性,从而提高了视觉重建的质量。在合成数据集和真实数据集上的大量实验验证了ADVP的有效性及其在视觉重建方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信