Enkui Zhang , Xinjia Ding , Jixin Zhang , Weikang Liu , Guangnian Liu , Mingzhe Li , Xinxin Liu , Yingjin Wang , Fusheng Zhang , Baoyi Li , Yu Zhu , Yupeng Yan , Jiayu Liu , Yuxin Wang , Xiaodong Tian , Yongsu Ma , Yinmo Yang
{"title":"Multi-omics analysis of polyamine metabolism implicates NT5E/CD73 in the progression of pancreatic cancer","authors":"Enkui Zhang , Xinjia Ding , Jixin Zhang , Weikang Liu , Guangnian Liu , Mingzhe Li , Xinxin Liu , Yingjin Wang , Fusheng Zhang , Baoyi Li , Yu Zhu , Yupeng Yan , Jiayu Liu , Yuxin Wang , Xiaodong Tian , Yongsu Ma , Yinmo Yang","doi":"10.1016/j.canlet.2025.217887","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) exhibits profound metabolic reprogramming, with polyamine metabolism emerging as a key driver of tumor progression and immune evasion. However, its comprehensive role and clinical significance in PDAC remain largely unexplored. We performed an integrative analysis using bulk transcriptomics, single-cell RNA sequencing (scRNA-seq), and functional assays to systematically characterize polyamine metabolism in PDAC. A polyamine metabolism-based prognostic model (PMscore) was developed via principal component analysis, and key regulatory genes were identified using a random forest algorithm. Functional studies in vitro and in vivo assessed the role of NT5E (CD73), a core gene involved in polyamine metabolism, in tumor biology and the tumor microenvironment (TME). Polyamine metabolism was markedly upregulated in PDAC and associated with poor prognosis. The PMscore effectively stratified patients into three prognostic subgroups and was predictive of metabolic and immune features. NT5E was identified as a critical regulator, highly expressed in epithelial and mesenchymal cells. Its knockdown impaired polyamine metabolism, reduced tumor cell proliferation and migration, and altered TME composition. Notably, CD73<sup>+</sup> cancer-associated fibroblasts (CAFs) were enriched near tumor cells, suggesting their involvement in metabolic crosstalk and immunosuppression. Our study provides a comprehensive multi-omics characterization of polyamine metabolism in PDAC. NT5E serves as a key metabolic and immunoregulatory gene, representing a promising biomarker and therapeutic target. Combined inhibition of NT5E and polyamine metabolism may offer a novel strategy to suppress tumor progression and modulate the immunosuppressive TME in PDAC.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"630 ","pages":"Article 217887"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525004550","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits profound metabolic reprogramming, with polyamine metabolism emerging as a key driver of tumor progression and immune evasion. However, its comprehensive role and clinical significance in PDAC remain largely unexplored. We performed an integrative analysis using bulk transcriptomics, single-cell RNA sequencing (scRNA-seq), and functional assays to systematically characterize polyamine metabolism in PDAC. A polyamine metabolism-based prognostic model (PMscore) was developed via principal component analysis, and key regulatory genes were identified using a random forest algorithm. Functional studies in vitro and in vivo assessed the role of NT5E (CD73), a core gene involved in polyamine metabolism, in tumor biology and the tumor microenvironment (TME). Polyamine metabolism was markedly upregulated in PDAC and associated with poor prognosis. The PMscore effectively stratified patients into three prognostic subgroups and was predictive of metabolic and immune features. NT5E was identified as a critical regulator, highly expressed in epithelial and mesenchymal cells. Its knockdown impaired polyamine metabolism, reduced tumor cell proliferation and migration, and altered TME composition. Notably, CD73+ cancer-associated fibroblasts (CAFs) were enriched near tumor cells, suggesting their involvement in metabolic crosstalk and immunosuppression. Our study provides a comprehensive multi-omics characterization of polyamine metabolism in PDAC. NT5E serves as a key metabolic and immunoregulatory gene, representing a promising biomarker and therapeutic target. Combined inhibition of NT5E and polyamine metabolism may offer a novel strategy to suppress tumor progression and modulate the immunosuppressive TME in PDAC.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.