Mark Wohlers , V.A. McGlone , Eibe Frank , Geoffrey Holmes
{"title":"Assessing machine learning models for near-infrared regression by measuring stability towards diffeomorphisms","authors":"Mark Wohlers , V.A. McGlone , Eibe Frank , Geoffrey Holmes","doi":"10.1016/j.chemolab.2025.105449","DOIUrl":null,"url":null,"abstract":"<div><div>Near infrared (NIR) spectroscopy is widely used as a tool for non-destructive assessment of fruit quality by applying measured spectra to predict quality parameters such as dry matter and soluble solids content using a suitable regression method. With continued advancements in deep learning, there is potential for improved predictive performance when neural network models are applied instead of partial least-squares regression, but choosing a model remains challenging as performance is sensitive to the model’s architecture. Taking inspiration from work done in image classification, we propose model selection by assessing relative stability to diffeomorphic transformations, providing a complementary approach to standard validation methods. This is particularly useful when labelled validation data is limited. Our empirical results on several NIR regression problems indicate that the proposed approach is comparable to the use of independent validation sets. In addition to the choice of deep learning architecture, we also consider the selection of the number of components in partial least-squares regression to demonstrate the method’s generality.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"264 ","pages":"Article 105449"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925001340","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Near infrared (NIR) spectroscopy is widely used as a tool for non-destructive assessment of fruit quality by applying measured spectra to predict quality parameters such as dry matter and soluble solids content using a suitable regression method. With continued advancements in deep learning, there is potential for improved predictive performance when neural network models are applied instead of partial least-squares regression, but choosing a model remains challenging as performance is sensitive to the model’s architecture. Taking inspiration from work done in image classification, we propose model selection by assessing relative stability to diffeomorphic transformations, providing a complementary approach to standard validation methods. This is particularly useful when labelled validation data is limited. Our empirical results on several NIR regression problems indicate that the proposed approach is comparable to the use of independent validation sets. In addition to the choice of deep learning architecture, we also consider the selection of the number of components in partial least-squares regression to demonstrate the method’s generality.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.