Finite-time stability analysis of gene regulatory network in bacteria-host interactions with spatial diffusion term

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhiqiang Lv , Yongwei Yang , Chengye Zou , Hao Zhang
{"title":"Finite-time stability analysis of gene regulatory network in bacteria-host interactions with spatial diffusion term","authors":"Zhiqiang Lv ,&nbsp;Yongwei Yang ,&nbsp;Chengye Zou ,&nbsp;Hao Zhang","doi":"10.1016/j.chaos.2025.116770","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the finite-time stable behavior of time-delay genetic regulatory networks incorporating spatial diffusion in the interactional between zebrafish and <em>Escherichia coli</em> under Dirichlet boundary conditions. The interaction between these two systems is examined in the context of <em>E. coli</em> invading the zebrafish body. The system representing the zebrafish is stable, while the <em>E. coli</em> system is initially unstable. After their interaction, both systems gradually reach a stable state. We propose an interacting coupled model, construct a novel Lyapunov-Krasovskii functional, and utilize the secondary delay partitioning method to derive stability criteria for the interacting genetic regulatory networks. The stability criteria we establish are less conservative than existing criteria, allowing the upper bound of the time delay derivative to be not less than 1. According to the defined evaluation criteria, the stronger the interaction between bacteria and the host, the longer the time required to suppress the bacteria or for treatment. Finally, numerical simulations are conducted to illustrate the mRNA and protein concentration trajectories, verifying the accuracy of the proposed criteria.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116770"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007830","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the finite-time stable behavior of time-delay genetic regulatory networks incorporating spatial diffusion in the interactional between zebrafish and Escherichia coli under Dirichlet boundary conditions. The interaction between these two systems is examined in the context of E. coli invading the zebrafish body. The system representing the zebrafish is stable, while the E. coli system is initially unstable. After their interaction, both systems gradually reach a stable state. We propose an interacting coupled model, construct a novel Lyapunov-Krasovskii functional, and utilize the secondary delay partitioning method to derive stability criteria for the interacting genetic regulatory networks. The stability criteria we establish are less conservative than existing criteria, allowing the upper bound of the time delay derivative to be not less than 1. According to the defined evaluation criteria, the stronger the interaction between bacteria and the host, the longer the time required to suppress the bacteria or for treatment. Finally, numerical simulations are conducted to illustrate the mRNA and protein concentration trajectories, verifying the accuracy of the proposed criteria.
空间扩散条件下细菌-宿主相互作用基因调控网络的有限时间稳定性分析
本研究探讨了Dirichlet边界条件下斑马鱼与大肠杆菌相互作用中包含空间扩散的时滞遗传调控网络的有限时间稳定行为。在大肠杆菌入侵斑马鱼身体的背景下,这两个系统之间的相互作用进行了检查。代表斑马鱼的系统是稳定的,而大肠杆菌系统最初是不稳定的。它们相互作用后,两个系统逐渐达到稳定状态。我们提出了一个相互作用的耦合模型,构造了一个新的Lyapunov-Krasovskii泛函,并利用二次延迟划分方法推导了相互作用的遗传调控网络的稳定性准则。所建立的稳定性判据比已有判据保守性小,使得时滞导数的上界不小于1。根据确定的评价标准,细菌与宿主的相互作用越强,抑制细菌或治疗所需的时间就越长。最后,进行了数值模拟来说明mRNA和蛋白质浓度轨迹,验证了所提出标准的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信