Juliane Lehmann, Hui Lin, Zihao Zhang, Maren Wiermann, Albert M. Ricken, Franziska Brinkmann, Jana Brendler, Christian Ullmann, Luisa Bayer, Sandra Berndt, Anja Penk, Nadine Winkler, Franz Wolfgang Hirsch, Thomas Fuhs, Josef Käs, Peng Xiao, Torsten Schöneberg, Martina Rauner, Jin-Peng Sun, Ines Liebscher
{"title":"The mechanosensitive adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) enhances bone formation","authors":"Juliane Lehmann, Hui Lin, Zihao Zhang, Maren Wiermann, Albert M. Ricken, Franziska Brinkmann, Jana Brendler, Christian Ullmann, Luisa Bayer, Sandra Berndt, Anja Penk, Nadine Winkler, Franz Wolfgang Hirsch, Thomas Fuhs, Josef Käs, Peng Xiao, Torsten Schöneberg, Martina Rauner, Jin-Peng Sun, Ines Liebscher","doi":"10.1038/s41392-025-02291-y","DOIUrl":null,"url":null,"abstract":"<p>Osteoporosis represents an increasing health and socioeconomic burden on aging societies. Current therapeutic options often come with potentially severe side effects or lack long-term efficacy, highlighting the urgent need for more effective treatments. Identifying novel drug targets requires a thorough understanding of their physiological roles. Genome-wide association studies in humans have linked gene variants of the adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) to variations in bone mineral density and body height. In this study, we explore the impact of GPR133/ADGRD1 on osteoblast differentiation and function. Constitutive and osteoblast-specific knockouts of <i>Gpr133/Adgrd1</i> in mice lead to reduced cortical bone mass and trabecularization in the femurs and vertebrae — features characteristic of osteoporosis. This osteopenic phenotype in receptor-deficient mice is caused by impaired osteoblast function, which, in turn, promotes increased osteoclast activity. At the molecular level, GPR133/ADGRD1 regulates osteoblast function and differentiation through a combined activation mechanism involving interaction with its endogenous ligand, protein tyrosine kinase 7 (PTK7), and mechanical forces. This is demonstrated in vitro through stretch assays and in vivo via a mechanical loading experiment. Further in vitro analysis shows that GPR133/ADGRD1-mediated osteoblast differentiation is driven by cAMP-dependent activation of the β-catenin signaling pathway. Activation of GPR133/ADGRD1 with the receptor-specific ligand AP-970/43482503 (AP503) enhances osteoblast function and differentiation, both in vitro and in vivo, significantly alleviating osteoporosis in a mouse ovariectomy model. These findings position GPR133/ADGRD1 as a promising therapeutic target for osteoporosis and other diseases characterized by reduced bone mass.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"26 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02291-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis represents an increasing health and socioeconomic burden on aging societies. Current therapeutic options often come with potentially severe side effects or lack long-term efficacy, highlighting the urgent need for more effective treatments. Identifying novel drug targets requires a thorough understanding of their physiological roles. Genome-wide association studies in humans have linked gene variants of the adhesion G protein-coupled receptor 133 (GPR133/ADGRD1) to variations in bone mineral density and body height. In this study, we explore the impact of GPR133/ADGRD1 on osteoblast differentiation and function. Constitutive and osteoblast-specific knockouts of Gpr133/Adgrd1 in mice lead to reduced cortical bone mass and trabecularization in the femurs and vertebrae — features characteristic of osteoporosis. This osteopenic phenotype in receptor-deficient mice is caused by impaired osteoblast function, which, in turn, promotes increased osteoclast activity. At the molecular level, GPR133/ADGRD1 regulates osteoblast function and differentiation through a combined activation mechanism involving interaction with its endogenous ligand, protein tyrosine kinase 7 (PTK7), and mechanical forces. This is demonstrated in vitro through stretch assays and in vivo via a mechanical loading experiment. Further in vitro analysis shows that GPR133/ADGRD1-mediated osteoblast differentiation is driven by cAMP-dependent activation of the β-catenin signaling pathway. Activation of GPR133/ADGRD1 with the receptor-specific ligand AP-970/43482503 (AP503) enhances osteoblast function and differentiation, both in vitro and in vivo, significantly alleviating osteoporosis in a mouse ovariectomy model. These findings position GPR133/ADGRD1 as a promising therapeutic target for osteoporosis and other diseases characterized by reduced bone mass.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.