Bridging language models and computational materials science: A prompt-driven framework for material property prediction

Shuai Lv, Lei Peng, Wentiao Wu, Yufan Yao, Shizhe Jiao, Wei Hu
{"title":"Bridging language models and computational materials science: A prompt-driven framework for material property prediction","authors":"Shuai Lv,&nbsp;Lei Peng,&nbsp;Wentiao Wu,&nbsp;Yufan Yao,&nbsp;Shizhe Jiao,&nbsp;Wei Hu","doi":"10.1002/mgea.70013","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) have demonstrated effectiveness in interpreting complex data. However, they encounter challenges in specialized applications, such as predicting material properties, due to limited integration with domain-specific knowledge. To overcome these challenges, we introduce MatAgent, an artificial intelligence (AI) agent that combines computational chemistry tools, such as first-principles (FP) calculations, with the capabilities of LLMs to predict key properties of materials. By leveraging prompt engineering and advanced reasoning techniques, MatAgent integrates a series of tools and acquires domain-specific knowledge in the field of material property prediction, enabling it to accurately predict the properties of materials without the need for predefined input structures. The experimental results indicate that MatAgent achieves a significant improvement in prediction accuracy and efficiency. As a novel approach that integrates LLMs with FP calculation tools, MatAgent highlights the potential of combining advanced computational techniques to enhance material property predictions, representing a significant advancement in computational materials science.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have demonstrated effectiveness in interpreting complex data. However, they encounter challenges in specialized applications, such as predicting material properties, due to limited integration with domain-specific knowledge. To overcome these challenges, we introduce MatAgent, an artificial intelligence (AI) agent that combines computational chemistry tools, such as first-principles (FP) calculations, with the capabilities of LLMs to predict key properties of materials. By leveraging prompt engineering and advanced reasoning techniques, MatAgent integrates a series of tools and acquires domain-specific knowledge in the field of material property prediction, enabling it to accurately predict the properties of materials without the need for predefined input structures. The experimental results indicate that MatAgent achieves a significant improvement in prediction accuracy and efficiency. As a novel approach that integrates LLMs with FP calculation tools, MatAgent highlights the potential of combining advanced computational techniques to enhance material property predictions, representing a significant advancement in computational materials science.

Abstract Image

桥梁语言模型和计算材料科学:材料特性预测的快速驱动框架
大型语言模型(llm)在解释复杂数据方面已经证明是有效的。然而,由于与特定领域知识的有限集成,它们在专业应用中遇到了挑战,例如预测材料特性。为了克服这些挑战,我们引入了MatAgent,这是一种人工智能(AI)代理,它结合了计算化学工具,如第一性原理(FP)计算,以及llm预测材料关键特性的能力。通过利用即时工程和高级推理技术,MatAgent集成了一系列工具,并获得了材料属性预测领域的特定知识,使其能够在不需要预定义输入结构的情况下准确预测材料的属性。实验结果表明,MatAgent在预测精度和效率上取得了显著的提高。作为一种将llm与FP计算工具相结合的新方法,MatAgent突出了结合先进计算技术来增强材料性能预测的潜力,代表了计算材料科学的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信