Multiobjective optimization of dielectric, thermal, and mechanical properties of inorganic glasses utilizing explainable machine learning and genetic algorithm

Jincheng Qin, Faqiang Zhang, Mingsheng Ma, Yongxiang Li, Zhifu Liu
{"title":"Multiobjective optimization of dielectric, thermal, and mechanical properties of inorganic glasses utilizing explainable machine learning and genetic algorithm","authors":"Jincheng Qin,&nbsp;Faqiang Zhang,&nbsp;Mingsheng Ma,&nbsp;Yongxiang Li,&nbsp;Zhifu Liu","doi":"10.1002/mgea.70005","DOIUrl":null,"url":null,"abstract":"<p>To meet the demands of advanced electronic devices, inorganic glasses are required to have comprehensive dielectric, thermal, and mechanical properties. However, the complex composition–property relationship and vast compositional diversity hinder optimization. This study developed machine learning models to predict permittivity, dielectric loss, thermal conductivity, coefficient of thermal expansion, and Young’s modulus based on the composition features of inorganic glasses. The optimal models achieve <i>R</i><sup>2</sup> values of 0.9614, 0.7411, 0.9454, 0.9684, and 0.8164, respectively. By integrating domain knowledge with model-agnostic interpretation methods, feature contributions and interactions were analyzed. The mixed alkali effect is crucial for property regulation, especially Na-K for dielectric loss and Na-Li for thermal conductivity. Boron anomaly shifts the high-λ region to a balanced composition of alkali metals with rising B%. The multiobjective optimization of properties was realized using a genetic algorithm framework. After 23 iterations, the optimal material in the MgO-Al<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system exhibits <i>ε</i><sub><i>r</i></sub> = 4.78, tanδ = 0.00063, <i>λ</i> = 2.59 W/(m·K), <i>α</i> = 50.27×10<sup>−7</sup>K<sup>−1</sup>, and <i>E</i> = 82.41 GPa, outperforming all materials in the dataset. The computational effort was reduced to 1/19 of that required using exhaustive search methods. This study provides a model interpretation framework and an effective multiobjective optimization strategy for glass design.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the demands of advanced electronic devices, inorganic glasses are required to have comprehensive dielectric, thermal, and mechanical properties. However, the complex composition–property relationship and vast compositional diversity hinder optimization. This study developed machine learning models to predict permittivity, dielectric loss, thermal conductivity, coefficient of thermal expansion, and Young’s modulus based on the composition features of inorganic glasses. The optimal models achieve R2 values of 0.9614, 0.7411, 0.9454, 0.9684, and 0.8164, respectively. By integrating domain knowledge with model-agnostic interpretation methods, feature contributions and interactions were analyzed. The mixed alkali effect is crucial for property regulation, especially Na-K for dielectric loss and Na-Li for thermal conductivity. Boron anomaly shifts the high-λ region to a balanced composition of alkali metals with rising B%. The multiobjective optimization of properties was realized using a genetic algorithm framework. After 23 iterations, the optimal material in the MgO-Al2O3-B2O3-SiO2 system exhibits εr = 4.78, tanδ = 0.00063, λ = 2.59 W/(m·K), α = 50.27×10−7K−1, and E = 82.41 GPa, outperforming all materials in the dataset. The computational effort was reduced to 1/19 of that required using exhaustive search methods. This study provides a model interpretation framework and an effective multiobjective optimization strategy for glass design.

Abstract Image

利用可解释的机器学习和遗传算法对无机玻璃的介电、热和机械性能进行多目标优化
为了满足先进电子器件的要求,无机玻璃需要具有综合的介电、热学和力学性能。然而,复杂的成分-性质关系和巨大的成分多样性阻碍了优化。本研究基于无机玻璃的组成特征,开发了机器学习模型来预测介电常数、介电损耗、导热系数、热膨胀系数和杨氏模量。最优模型的R2值分别为0.9614、0.7411、0.9454、0.9684、0.8164。通过将领域知识与模型无关的解释方法相结合,分析了特征贡献和相互作用。混合碱效应对其性能调控至关重要,特别是Na-K对介电损耗和Na-Li对导热系数的调控。硼异常将高λ区转移到碱金属的平衡组成,B%上升。采用遗传算法框架实现了性能的多目标优化。经过23次迭代,优选出的MgO-Al2O3-B2O3-SiO2体系的最佳材料εr = 4.78, tanδ = 0.00063, λ = 2.59 W/(m·K), α = 50.27×10−7K−1,E = 82.41 GPa均优于数据集中的所有材料。计算量减少到穷尽搜索方法的1/19。该研究为玻璃设计提供了一个模型解释框架和有效的多目标优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信