Xiong Xu, J. X. Lv, Y. Wang, Min Li, Zhe Wang, Hui Wang
{"title":"High-throughput calculation of large spin Hall conductivity in heavy-metal-based antiperovskite compounds","authors":"Xiong Xu, J. X. Lv, Y. Wang, Min Li, Zhe Wang, Hui Wang","doi":"10.1002/mgea.69","DOIUrl":null,"url":null,"abstract":"<p>Spin Hall effect (SHE) provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing. In this work, we conduct high-throughput calculations on the spin Hall conductivity (SHC) of antiperovskite compounds with the composition ZXM<sub>3</sub>, where Z is a nonmetal, X is a metal, and M is a platinum group metal. From an initial database over 4500 structures, we screen 295 structurally stable compounds and identify 24 compounds with intrinsic SHC exceeding 500 (ℏ/e) (Ω⁻<sup>1</sup> cm⁻<sup>1</sup>). We reveal a strong dependence of SHC on spin-orbit coupling-induced energy splitting near the Fermi level. In addition, SHCs can be regulated through proper doping of electrons or holes. The present work establishes high-throughput database of SHC in antiperovskites which is crucial for designing future electric and spintronic devices.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.69","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spin Hall effect (SHE) provides a promising solution to the realization of advantageous functionalities for spin-based recording and information processing. In this work, we conduct high-throughput calculations on the spin Hall conductivity (SHC) of antiperovskite compounds with the composition ZXM3, where Z is a nonmetal, X is a metal, and M is a platinum group metal. From an initial database over 4500 structures, we screen 295 structurally stable compounds and identify 24 compounds with intrinsic SHC exceeding 500 (ℏ/e) (Ω⁻1 cm⁻1). We reveal a strong dependence of SHC on spin-orbit coupling-induced energy splitting near the Fermi level. In addition, SHCs can be regulated through proper doping of electrons or holes. The present work establishes high-throughput database of SHC in antiperovskites which is crucial for designing future electric and spintronic devices.