Unveiling Hidden Intramolecular Non-Covalent Interactions in a Neutral Serine, Its Zwitterion, Cluster, and Crystal by Features of Electron Density

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vasilii Korotenko, Anna Egorova, Vladimir Tsirelson
{"title":"Unveiling Hidden Intramolecular Non-Covalent Interactions in a Neutral Serine, Its Zwitterion, Cluster, and Crystal by Features of Electron Density","authors":"Vasilii Korotenko,&nbsp;Anna Egorova,&nbsp;Vladimir Tsirelson","doi":"10.1002/jcc.70134","DOIUrl":null,"url":null,"abstract":"<p>We investigate intramolecular non-covalent interactions (NCIs) in neutral serine, its zwitterion, molecular clusters, and crystal using electron density-based approaches, including QTAIM, RDG, IQA, and electronic pressure analysis. In addition to completed NCIs (hydrogen bonds with bond paths), we identify latent interactions—attractive, bond-path-free atomic pair interactions with negative interaction energies. These are classified into <i>dynamic</i> (vibration-induced and transient) and <i>static</i> (secondary, persistent but structurally passive) types. Analysis of the internal pressure in electronic continuum reveals that latent NCIs exhibit distinct signatures in the kinetic and exchange components, which evolve across the molecular, cluster, and crystalline states. <i>Dynamic</i> interactions are characterized by off-axis minima in the exchange part of the pressure, whereas <i>static</i> interactions lack such features. Upon crystallization, intramolecular latent NCIs may disappear due to electron density redistribution and the formation of intermolecular hydrogen bonds. These intermolecular contacts may also spatially constrain atoms, suppressing vibrational flexibility and effectively converting <i>dynamic</i> NCIs into <i>static</i> ones. The kinetic pressure highlights regions of electron localization, while the exchange pressure offers a physical criterion for distinguishing different types of NCIs. Our findings demonstrate the structural and stabilizing roles of latent interactions and establish electronic pressure as a sensitive and informative descriptor for their analysis.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 17","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70134","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate intramolecular non-covalent interactions (NCIs) in neutral serine, its zwitterion, molecular clusters, and crystal using electron density-based approaches, including QTAIM, RDG, IQA, and electronic pressure analysis. In addition to completed NCIs (hydrogen bonds with bond paths), we identify latent interactions—attractive, bond-path-free atomic pair interactions with negative interaction energies. These are classified into dynamic (vibration-induced and transient) and static (secondary, persistent but structurally passive) types. Analysis of the internal pressure in electronic continuum reveals that latent NCIs exhibit distinct signatures in the kinetic and exchange components, which evolve across the molecular, cluster, and crystalline states. Dynamic interactions are characterized by off-axis minima in the exchange part of the pressure, whereas static interactions lack such features. Upon crystallization, intramolecular latent NCIs may disappear due to electron density redistribution and the formation of intermolecular hydrogen bonds. These intermolecular contacts may also spatially constrain atoms, suppressing vibrational flexibility and effectively converting dynamic NCIs into static ones. The kinetic pressure highlights regions of electron localization, while the exchange pressure offers a physical criterion for distinguishing different types of NCIs. Our findings demonstrate the structural and stabilizing roles of latent interactions and establish electronic pressure as a sensitive and informative descriptor for their analysis.

Abstract Image

通过电子密度特征揭示中性丝氨酸及其两性离子、团簇和晶体中隐藏的分子内非共价相互作用
我们使用基于电子密度的方法,包括QTAIM、RDG、IQA和电子压力分析,研究了中性丝氨酸、两性离子、分子团簇和晶体中的分子内非共价相互作用(NCIs)。除了完整的nci(带有键路径的氢键)外,我们还发现了潜在的相互作用——具有负相互作用能量的有吸引力的、无键路径的原子对相互作用。这些类型分为动态(振动引起的和短暂的)和静态(次要的,持续的,但结构被动的)类型。对电子连续体内部压力的分析表明,潜在的NCIs在动力学和交换组分中表现出明显的特征,这些特征在分子、簇和晶体状态中进化。动态相互作用的特点是在压力的交换部分有离轴最小值,而静态相互作用则没有这样的特征。结晶后,由于电子密度重分布和分子间氢键的形成,分子内潜伏的NCIs可能消失。这些分子间接触也可能在空间上约束原子,抑制振动柔韧性并有效地将动态NCIs转化为静态NCIs。运动压力突出了电子的局部化区域,而交换压力为区分不同类型的NCIs提供了物理标准。我们的研究结果证明了潜在相互作用的结构和稳定作用,并建立了电子压力作为其分析的敏感和信息描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信