Finite-temperature properties of NbO 2 ${\text{NbO}}_{2}$ from a deep-learning interatomic potential

Xinhang Li, Yongqiang Wang, Tianyu Jiao, Zhaoxin Liu, Chuanle Yang, Ri He, Liang Si
{"title":"Finite-temperature properties of \n \n \n \n NbO\n 2\n \n \n ${\\text{NbO}}_{2}$\n from a deep-learning interatomic potential","authors":"Xinhang Li,&nbsp;Yongqiang Wang,&nbsp;Tianyu Jiao,&nbsp;Zhaoxin Liu,&nbsp;Chuanle Yang,&nbsp;Ri He,&nbsp;Liang Si","doi":"10.1002/mgea.70011","DOIUrl":null,"url":null,"abstract":"<p>Using first-principles-based machine-learning potential, molecular dynamics (MD) simulations are performed to investigate the micro-mechanism in phase transition of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math>. Treating the DFT results of the low- and intermediate-temperature phases of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math> as training data in the deep-learning model, we successfully constructed an interatomic potential capable of accurately reproducing the phase transitions from low-temperature (pressure) to high-temperature (pressure) regimes. Notably, our simulations predict a high-pressure monoclinic phase (&gt;14 GPa) without treating its information in the training set, consistent with previous experimental findings, demonstrating the reliability of the constructed interatomic potential. We identified the Nb-dimers as the key structural motif governing the phase transitions. At low temperatures, the displacements of the Nb-dimers drive the transition between the <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <msub>\n <mn>4</mn>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <mi>a</mi>\n </mrow>\n <annotation> $I{4}_{1}/a$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation> $\\alpha $</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math>) and <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <msub>\n <mn>4</mn>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> $I{4}_{1}$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n </mrow>\n <annotation> $\\beta $</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math>) phases, while at high temperatures, Nb ions are prone to being equally distributed and the disappearance of Nb-dimers leads to the stabilization of a high-symmetry <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <msub>\n <mn>4</mn>\n <mn>2</mn>\n </msub>\n <mo>/</mo>\n <mi>m</mi>\n <mi>n</mi>\n <mi>m</mi>\n </mrow>\n <annotation> $P{4}_{2}/mnm$</annotation>\n </semantics></math> phase. These findings elucidate the structural and dynamical mechanisms underlying the structural properties of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NbO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NbO}}_{2}$</annotation>\n </semantics></math> and highlight the utility of combining DFT and deep potential MD methods for studying complex phase transitions in transition metal oxides.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using first-principles-based machine-learning potential, molecular dynamics (MD) simulations are performed to investigate the micro-mechanism in phase transition of NbO 2 ${\text{NbO}}_{2}$ . Treating the DFT results of the low- and intermediate-temperature phases of NbO 2 ${\text{NbO}}_{2}$ as training data in the deep-learning model, we successfully constructed an interatomic potential capable of accurately reproducing the phase transitions from low-temperature (pressure) to high-temperature (pressure) regimes. Notably, our simulations predict a high-pressure monoclinic phase (>14 GPa) without treating its information in the training set, consistent with previous experimental findings, demonstrating the reliability of the constructed interatomic potential. We identified the Nb-dimers as the key structural motif governing the phase transitions. At low temperatures, the displacements of the Nb-dimers drive the transition between the I 4 1 / a $I{4}_{1}/a$ ( α $\alpha $ - NbO 2 ${\text{NbO}}_{2}$ ) and I 4 1 $I{4}_{1}$ ( β $\beta $ - NbO 2 ${\text{NbO}}_{2}$ ) phases, while at high temperatures, Nb ions are prone to being equally distributed and the disappearance of Nb-dimers leads to the stabilization of a high-symmetry P 4 2 / m n m $P{4}_{2}/mnm$ phase. These findings elucidate the structural and dynamical mechanisms underlying the structural properties of NbO 2 ${\text{NbO}}_{2}$ and highlight the utility of combining DFT and deep potential MD methods for studying complex phase transitions in transition metal oxides.

Abstract Image

基于深度学习原子间势的NbO 2 ${\text{NbO}}_{2}$的有限温度性质
利用基于第一性原理的机器学习势,进行了分子动力学(MD)模拟,研究了nbo2 ${\text{NbO}}_{2}$相变的微观机制。将NbO 2 ${\text{NbO}}_{2}$低温和中温相的DFT结果作为深度学习模型中的训练数据,我们成功构建了一个能够准确再现从低温(压力)到高温(压力)相变的原子间势。值得注意的是,我们的模拟预测了高压单斜相(&gt;14 GPa),而没有在训练集中处理其信息,与先前的实验结果一致,证明了构建的原子间势的可靠性。我们发现nb二聚体是控制相变的关键结构基序。在低温下,铌二聚体的位移驱动了i41 / a $I{4}_{1}/a$ (α $\alpha $ -)之间的转变nbo2 ${\text{NbO}}_{2}$)和i41 $I{4}_{1}$ (β $\beta $ -NbO 2 ${\text{NbO}}_{2}$)相,而在高温下,Nb离子倾向于均匀分布,Nb二聚体的消失导致高对称性p4.2 / m n m $P{4}_{2}/mnm$相的稳定。这些发现阐明了NbO 2 ${\text{NbO}}_{2}$结构性质的结构和动力学机制,并强调了将DFT和深势MD方法结合起来研究过渡金属氧化物中复杂相变的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信