Accelerating the design of highly separable Fe-containing intermetallics in Al–Si alloys via DFT calculations and experimental validation

Xiaozu Zhang, Dongtao Wang, Hiromi Nagaumi, Rui Wang, Zibin Wu, Minghe Zhang, Dongsheng Gao, Hao Chen, Pengfei Wang, Pengfei Zhou, Yunxuan Zhou, Zhixiu Wang, Tailin Li
{"title":"Accelerating the design of highly separable Fe-containing intermetallics in Al–Si alloys via DFT calculations and experimental validation","authors":"Xiaozu Zhang,&nbsp;Dongtao Wang,&nbsp;Hiromi Nagaumi,&nbsp;Rui Wang,&nbsp;Zibin Wu,&nbsp;Minghe Zhang,&nbsp;Dongsheng Gao,&nbsp;Hao Chen,&nbsp;Pengfei Wang,&nbsp;Pengfei Zhou,&nbsp;Yunxuan Zhou,&nbsp;Zhixiu Wang,&nbsp;Tailin Li","doi":"10.1002/mgea.70008","DOIUrl":null,"url":null,"abstract":"<p>The detrimental Fe element in Al-Si cast alloy can be effectively removed by Fe-containing intermetallics separation. However, the formation temperature of Fe-containing intermetallics can be further improved to increase the removal efficiency of Fe element. The effects of the Cr/Mn atomic ratio on the stability, theoretical melting point, elastic modulus, and thermal properties were calculated with the aim of improving the stability of the α-Al(FeMnCr)Si phase. An increased Cr/Mn atomic ratio effectively increased the stability, theoretical melting point, elastic modulus, isobaric heat capacity, and reduced the volumetric thermal expansion coefficient of α-Al(FeMnCr)Si phase, which can be explained by the strengthened Al-Cr and Si-Cr chemical bonds. The experimental study results revealed that the formation temperature and Young's modulus of the α-Al(FeMnCr)Si phase increase from 673.0°C and 228.5 GPa to 732.0°C and 272.1 GPa with the Cr/Mn atomic ratio increasing from 0.11 to 0.8, which better validates the thermodynamic stability, theoretical melting point and elastic modulus calculation results. These results provide a new strategy for designing Fe-containing intermetallics with the desired properties, which contributes to guiding the development of high-performance recycled Al-Si alloys.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detrimental Fe element in Al-Si cast alloy can be effectively removed by Fe-containing intermetallics separation. However, the formation temperature of Fe-containing intermetallics can be further improved to increase the removal efficiency of Fe element. The effects of the Cr/Mn atomic ratio on the stability, theoretical melting point, elastic modulus, and thermal properties were calculated with the aim of improving the stability of the α-Al(FeMnCr)Si phase. An increased Cr/Mn atomic ratio effectively increased the stability, theoretical melting point, elastic modulus, isobaric heat capacity, and reduced the volumetric thermal expansion coefficient of α-Al(FeMnCr)Si phase, which can be explained by the strengthened Al-Cr and Si-Cr chemical bonds. The experimental study results revealed that the formation temperature and Young's modulus of the α-Al(FeMnCr)Si phase increase from 673.0°C and 228.5 GPa to 732.0°C and 272.1 GPa with the Cr/Mn atomic ratio increasing from 0.11 to 0.8, which better validates the thermodynamic stability, theoretical melting point and elastic modulus calculation results. These results provide a new strategy for designing Fe-containing intermetallics with the desired properties, which contributes to guiding the development of high-performance recycled Al-Si alloys.

Abstract Image

通过DFT计算和实验验证加速设计Al-Si合金中高度可分离的含铁金属间化合物
采用含铁金属间化合物分离可以有效去除铝硅铸造合金中的有害铁元素。但是,可以进一步提高含铁金属间化合物的形成温度,以提高对铁元素的去除效率。为了提高α-Al(FeMnCr)Si相的稳定性,计算了Cr/Mn原子比对α-Al(FeMnCr)Si相稳定性、理论熔点、弹性模量和热性能的影响。Cr/Mn原子比的增大有效地提高了α-Al(FeMnCr)Si相的稳定性、理论熔点、弹性模量、等压热容,降低了α-Al(FeMnCr)Si相的体积热膨胀系数,这可以解释为Al-Cr和Si-Cr化学键的增强。实验研究结果表明,α-Al(FeMnCr)Si相的形成温度和杨氏模量从673.0℃和228.5 GPa增加到732.0℃和272.1 GPa, Cr/Mn原子比从0.11增加到0.8,较好地验证了热力学稳定性、理论熔点和弹性模量计算结果。这些结果为设计具有理想性能的含铁金属间化合物提供了新的策略,有助于指导高性能再生铝硅合金的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信