Decentralised adaptive learning-based control of robot manipulators with unknown parameters

Emil Mühlbradt Sveen, Jing Zhou, Morten Kjeld Ebbesen, Mohammad Poursina
{"title":"Decentralised adaptive learning-based control of robot manipulators with unknown parameters","authors":"Emil Mühlbradt Sveen,&nbsp;Jing Zhou,&nbsp;Morten Kjeld Ebbesen,&nbsp;Mohammad Poursina","doi":"10.1016/j.jai.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies motor joint control of a 4-degree-of-freedom (DoF) robotic manipulator using learning-based Adaptive Dynamic Programming (ADP) approach. The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom (DoF). Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories. The proposed control strategy employs an off-line, off-policy iterative approach to derive four optimal control policies, one for each joint, under exploration strategies. The objective of the controller is to control the position of each joint. Simulation and experimental results show that four independent optimal controllers are found, each under similar exploration strategies, and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities. The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities, such as actuation limitations, output saturation, and filter delays.</div></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"4 2","pages":"Pages 136-144"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855425000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies motor joint control of a 4-degree-of-freedom (DoF) robotic manipulator using learning-based Adaptive Dynamic Programming (ADP) approach. The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom (DoF). Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories. The proposed control strategy employs an off-line, off-policy iterative approach to derive four optimal control policies, one for each joint, under exploration strategies. The objective of the controller is to control the position of each joint. Simulation and experimental results show that four independent optimal controllers are found, each under similar exploration strategies, and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities. The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities, such as actuation limitations, output saturation, and filter delays.
未知参数机器人机械臂的分散自适应学习控制
采用基于学习的自适应动态规划(ADP)方法研究了四自由度机械臂的运动关节控制问题。该机械臂的动力学模型为开环四连杆四自由度串联运动链。基于一组成本矩阵和从勘探轨迹收集的数据,采用ADP方法为每个环节设计分散式最优控制器。所提出的控制策略采用离线、非策略迭代方法,在勘探策略下推导出四个最优控制策略,每个节点一个。控制器的目标是控制每个关节的位置。仿真和实验结果表明,找到了四个独立的最优控制器,每个控制器在相似的探索策略下,尽管存在这些复杂性,所提出的ADP方法仍然成功地产生了最优线性控制策略。在qanser Qarm机器人平台上进行的实验结果表明,所提出的ADP控制器在处理驱动限制、输出饱和和滤波器延迟等重大动态非线性方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信