{"title":"Mhorseshoe package in R: Approximate algorithm for the horseshoe prior in Bayesian linear model","authors":"Mingi Kang, Kyoungjae Lee","doi":"10.1016/j.softx.2025.102236","DOIUrl":null,"url":null,"abstract":"<div><div>The horseshoe prior is a continuous shrinkage prior frequently used in high-dimensional Bayesian sparse linear regression models. Although the horseshoe prior theoretically guarantees excellent shrinkage properties, performing a Markov Chain Monte Carlo (MCMC) algorithm incurs high computational costs per iteration. We introduce the <span>Mhorseshoe</span> package in R, which implements posterior inference under the horseshoe prior, based on the exact and approximate algorithms proposed in Johndrow et al. (2020). Furthermore, this package incorporates a novel adaptive selection method, which we developed and implemented to determine the tuning parameter in the approximate algorithm. We conducted a simulation study and confirmed that the algorithm can be effectively applied to large datasets.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"31 ","pages":"Article 102236"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025002031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The horseshoe prior is a continuous shrinkage prior frequently used in high-dimensional Bayesian sparse linear regression models. Although the horseshoe prior theoretically guarantees excellent shrinkage properties, performing a Markov Chain Monte Carlo (MCMC) algorithm incurs high computational costs per iteration. We introduce the Mhorseshoe package in R, which implements posterior inference under the horseshoe prior, based on the exact and approximate algorithms proposed in Johndrow et al. (2020). Furthermore, this package incorporates a novel adaptive selection method, which we developed and implemented to determine the tuning parameter in the approximate algorithm. We conducted a simulation study and confirmed that the algorithm can be effectively applied to large datasets.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.