{"title":"Targeting DNA mismatches with metal complexes","authors":"Natália Kolozsvári, Martin R. Gill","doi":"10.1016/j.jinorgbio.2025.112977","DOIUrl":null,"url":null,"abstract":"<div><div>DNA mismatches are non Watson-Crick base pairs that arise from errors during replication or are the result of DNA damage. Normally repaired by the mismatch mediated repair (MMR) pathway, in cancers deficient in MMR, such as subsets of colorectal and endometrial cancers, mismatches persist and accumulate, providing a biochemical vulnerability creating a target for small-molecule intervention. This review explores how metal complexes employing rhodium(III), ruthenium(II) or platinum(II) centres can exploit this molecular distinction to preferentially bind mismatch sites in DNA. We discuss the potential of this interaction to act as a foundation for next-generation therapeutics and imaging probes where the unique structural, electronic, and photophysical properties of metal complexes and associated ligand design offer opportunities to differentiate between canonical and mismatched DNA with high selectivity.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"271 ","pages":"Article 112977"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425001576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA mismatches are non Watson-Crick base pairs that arise from errors during replication or are the result of DNA damage. Normally repaired by the mismatch mediated repair (MMR) pathway, in cancers deficient in MMR, such as subsets of colorectal and endometrial cancers, mismatches persist and accumulate, providing a biochemical vulnerability creating a target for small-molecule intervention. This review explores how metal complexes employing rhodium(III), ruthenium(II) or platinum(II) centres can exploit this molecular distinction to preferentially bind mismatch sites in DNA. We discuss the potential of this interaction to act as a foundation for next-generation therapeutics and imaging probes where the unique structural, electronic, and photophysical properties of metal complexes and associated ligand design offer opportunities to differentiate between canonical and mismatched DNA with high selectivity.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.