Lie symmetries, stability, and chaotic dynamics of solitons in nematic liquid crystals with stochastic perturbation

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ahmed H. Arnous
{"title":"Lie symmetries, stability, and chaotic dynamics of solitons in nematic liquid crystals with stochastic perturbation","authors":"Ahmed H. Arnous","doi":"10.1016/j.chaos.2025.116730","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the nonlinear and stochastic dynamics of solitons in nematic liquid crystals under the influence of multiplicative noise. Starting with a coupled nonlinear Schrödinger system and a reorientational equation, we apply a gauge transformation to remove stochastic perturbations modeled by Stratonovich calculus. Lie symmetry analysis is then employed to systematically reduce the resulting deterministic partial differential equations into ordinary differential equations. The dynamical system derived from the traveling-wave reduction is analyzed through phase portraits and Hamiltonian formulations, revealing various equilibrium structures. The presence of chaotic dynamics is confirmed by computing the Lyapunov exponent and visualizing phase transitions. We also derive explicit solitary and periodic wave solutions using elliptic and hyperbolic function representations. Our results demonstrate how Lie symmetries, combined with stochastic modeling, offer a powerful framework to understand and classify the complex behaviors of solitonic waves in nonlinear optical media.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116730"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500743X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the nonlinear and stochastic dynamics of solitons in nematic liquid crystals under the influence of multiplicative noise. Starting with a coupled nonlinear Schrödinger system and a reorientational equation, we apply a gauge transformation to remove stochastic perturbations modeled by Stratonovich calculus. Lie symmetry analysis is then employed to systematically reduce the resulting deterministic partial differential equations into ordinary differential equations. The dynamical system derived from the traveling-wave reduction is analyzed through phase portraits and Hamiltonian formulations, revealing various equilibrium structures. The presence of chaotic dynamics is confirmed by computing the Lyapunov exponent and visualizing phase transitions. We also derive explicit solitary and periodic wave solutions using elliptic and hyperbolic function representations. Our results demonstrate how Lie symmetries, combined with stochastic modeling, offer a powerful framework to understand and classify the complex behaviors of solitonic waves in nonlinear optical media.
随机扰动下向列液晶中孤子的李对称性、稳定性和混沌动力学
本文研究了乘性噪声影响下向列液晶中孤子的非线性和随机动力学。从一个耦合非线性Schrödinger系统和一个重定向方程出发,应用规范变换去除由Stratonovich微积分建模的随机扰动。然后利用李对称分析系统地将得到的确定性偏微分方程化简为常微分方程。通过相图和哈密顿公式分析了由行波约简导出的动力系统,揭示了各种平衡结构。混沌动力学的存在通过计算李雅普诺夫指数和可视化相变来证实。我们还用椭圆和双曲函数表示导出了显式孤波解和周期波解。我们的研究结果表明,李氏对称性与随机建模相结合,为理解和分类非线性光学介质中孤子波的复杂行为提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信