Stochastic dynamics and probability analysis for a generalized epidemic model with environmental noise

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Brahim Boukanjime , Mohamed Maama
{"title":"Stochastic dynamics and probability analysis for a generalized epidemic model with environmental noise","authors":"Brahim Boukanjime ,&nbsp;Mohamed Maama","doi":"10.1016/j.chaos.2025.116744","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider a stochastic SEIQR (Susceptible–Exposed–Infected–Quarantined–Recovered) epidemic model with a generalized incidence function. Using the Lyapunov method, we establish the existence and uniqueness of a global positive solution to the model, ensuring that it remains well-defined over time. We further establish V-geometric ergodicity, which guarantees the exponential convergence of the system’s probability distribution to its stationary measure, providing a quantitative measure of the system’s stability over time. By leveraging Young’s and Chebyshev’s inequalities, we demonstrate the concepts of stochastic ultimate boundedness and stochastic permanence, providing insights into the long-term behavior of the epidemic dynamics under random perturbations. Additionally, we derive conditions for stochastic extinction, which describes scenarios where the epidemic may eventually die out. Finally, we perform numerical simulations to verify our theoretical results and assess the model’s behavior under different parameters.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116744"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500757X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider a stochastic SEIQR (Susceptible–Exposed–Infected–Quarantined–Recovered) epidemic model with a generalized incidence function. Using the Lyapunov method, we establish the existence and uniqueness of a global positive solution to the model, ensuring that it remains well-defined over time. We further establish V-geometric ergodicity, which guarantees the exponential convergence of the system’s probability distribution to its stationary measure, providing a quantitative measure of the system’s stability over time. By leveraging Young’s and Chebyshev’s inequalities, we demonstrate the concepts of stochastic ultimate boundedness and stochastic permanence, providing insights into the long-term behavior of the epidemic dynamics under random perturbations. Additionally, we derive conditions for stochastic extinction, which describes scenarios where the epidemic may eventually die out. Finally, we perform numerical simulations to verify our theoretical results and assess the model’s behavior under different parameters.
含环境噪声的广义流行病模型的随机动力学与概率分析
本文考虑具有广义发病率函数的随机SEIQR(易感-暴露-感染-隔离-恢复)流行病模型。使用Lyapunov方法,我们建立了模型的全局正解的存在性和唯一性,确保它随着时间的推移保持良好定义。进一步建立了v几何遍历性,保证了系统概率分布对平稳测度的指数收敛,提供了系统随时间稳定性的定量测度。通过利用Young和Chebyshev不等式,我们证明了随机最终有界性和随机持久性的概念,为随机扰动下流行病动力学的长期行为提供了见解。此外,我们推导了随机灭绝的条件,它描述了流行病最终可能消失的情景。最后,我们通过数值模拟来验证我们的理论结果,并评估模型在不同参数下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信