{"title":"Design and implementation of a self-driving car using deep reinforcement learning: A comprehensive study","authors":"Rachid Djerbi, Anis Rouane, Zineb Taleb, Safia Saradouni","doi":"10.1016/j.cie.2025.111319","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a groundbreaking and comprehensive study on the design, implementation, and evaluation of a self-driving car utilizing deep reinforcement learning, showcasing significant advancements in autonomous vehicle technology. Our robust framework integrates three innovative AI models for essential functionalities: road detection, traffic sign recognition, and obstacle avoidance. The system architecture, structured around a three layers “DDD” (Data, Detection, Decision) approach, involves meticulous data preprocessing for traffic signs and road data, followed by specialized Deep Learning models for each detection task, including a CNN for traffic signs, a CNN for road detection, and the pre-trained MobileNet-SSD for obstacle detection. A reinforcement learning agent in the Decision Layer processes these outputs for real-time control (steering, acceleration, braking) through a continuous learning process with environmental feedback. The research encompasses both extensive simulation in Unity, leveraging the ML-Agents toolkit for agent training across diverse environments, and crucial real-world deployment. Our reward/punishment system in the simulation environment, based on collisions with road markers and obstacles, refined the agent’s decision-making. The trained AI models were successfully exported and deployed onto a physical prototype, controlled by a Raspberry Pi and equipped with a camera and ultrasonic sensors. Real-world testing affirmed the robust performance of the physical model in detecting roads, recognizing traffic signs, and effectively avoiding obstacles. Quantitative results demonstrate compelling performance, including over 90% accuracy in obstacle detection and a 15% improvement in navigation efficiency compared to traditional algorithms under controlled simulation conditions. Model evaluation metrics show a 98% accuracy, 12% loss, and a prediction rate exceeding 77%. This study not only contributes a comprehensive framework for autonomous vehicle development but also highlights the transformative potential of deep reinforcement learning for creating intelligent and adaptable autonomous systems in both virtual and real-world scenarios, paving the way for safer and more efficient transportation technologies.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"207 ","pages":"Article 111319"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225004656","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a groundbreaking and comprehensive study on the design, implementation, and evaluation of a self-driving car utilizing deep reinforcement learning, showcasing significant advancements in autonomous vehicle technology. Our robust framework integrates three innovative AI models for essential functionalities: road detection, traffic sign recognition, and obstacle avoidance. The system architecture, structured around a three layers “DDD” (Data, Detection, Decision) approach, involves meticulous data preprocessing for traffic signs and road data, followed by specialized Deep Learning models for each detection task, including a CNN for traffic signs, a CNN for road detection, and the pre-trained MobileNet-SSD for obstacle detection. A reinforcement learning agent in the Decision Layer processes these outputs for real-time control (steering, acceleration, braking) through a continuous learning process with environmental feedback. The research encompasses both extensive simulation in Unity, leveraging the ML-Agents toolkit for agent training across diverse environments, and crucial real-world deployment. Our reward/punishment system in the simulation environment, based on collisions with road markers and obstacles, refined the agent’s decision-making. The trained AI models were successfully exported and deployed onto a physical prototype, controlled by a Raspberry Pi and equipped with a camera and ultrasonic sensors. Real-world testing affirmed the robust performance of the physical model in detecting roads, recognizing traffic signs, and effectively avoiding obstacles. Quantitative results demonstrate compelling performance, including over 90% accuracy in obstacle detection and a 15% improvement in navigation efficiency compared to traditional algorithms under controlled simulation conditions. Model evaluation metrics show a 98% accuracy, 12% loss, and a prediction rate exceeding 77%. This study not only contributes a comprehensive framework for autonomous vehicle development but also highlights the transformative potential of deep reinforcement learning for creating intelligent and adaptable autonomous systems in both virtual and real-world scenarios, paving the way for safer and more efficient transportation technologies.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.