Reflection coupling for unadjusted generalized Hamiltonian Monte Carlo in the nonconvex stochastic gradient case

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Martin Chak, Pierre Monmarché
{"title":"Reflection coupling for unadjusted generalized Hamiltonian Monte Carlo in the nonconvex stochastic gradient case","authors":"Martin Chak, Pierre Monmarché","doi":"10.1093/imanum/draf045","DOIUrl":null,"url":null,"abstract":"Contraction in Wasserstein 1-distance with explicit rates is established for generalized Hamiltonian Monte Carlo with stochastic gradients under possibly nonconvex conditions. The algorithms considered include splitting schemes of kinetic Langevin diffusion, which are commonly used in molecular dynamics simulations. To accommodate the degenerate noise structure corresponding to inertia existing in the chain, a characteristically discrete-in-time coupling and contraction proof is devised. As consequence, quantitative Gaussian concentration bounds are provided for empirical averages. Convergence in Wasserstein 2-distance and total variation are also given, together with numerical bias estimates.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf045","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Contraction in Wasserstein 1-distance with explicit rates is established for generalized Hamiltonian Monte Carlo with stochastic gradients under possibly nonconvex conditions. The algorithms considered include splitting schemes of kinetic Langevin diffusion, which are commonly used in molecular dynamics simulations. To accommodate the degenerate noise structure corresponding to inertia existing in the chain, a characteristically discrete-in-time coupling and contraction proof is devised. As consequence, quantitative Gaussian concentration bounds are provided for empirical averages. Convergence in Wasserstein 2-distance and total variation are also given, together with numerical bias estimates.
非凸随机梯度情况下非调整广义哈密顿蒙特卡罗的反射耦合
在可能非凸条件下,建立了随机梯度广义哈密顿蒙特卡罗的Wasserstein 1-距离的显率收缩。所考虑的算法包括在分子动力学模拟中常用的动力学朗格万扩散的分裂方案。为了适应与惯性相对应的简并噪声结构,设计了一种具有离散性的实时耦合和收缩证明。因此,为经验平均值提供了定量的高斯浓度界限。给出了Wasserstein 2的收敛性,距离和总变异,以及数值偏差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信