Christophe M.J. Lefebvre, Rian E. Pierneef, Oleg N. Reva
{"title":"SeqWord Motif Mapper: A Tool for Rapid Statistical Analysis and Visualization of Epigenetic Modifications in Bacterial Genomes","authors":"Christophe M.J. Lefebvre, Rian E. Pierneef, Oleg N. Reva","doi":"10.1016/j.jmb.2025.169307","DOIUrl":null,"url":null,"abstract":"<div><div>Genomic methylation in bacteria plays a crucial role in gene regulation, chromosome replication, pathogenicity, and defense against phages. While single-molecule real-time (SMRT) sequencing technologies have advanced the detection of epigenetically modified bases, the statistical analysis of their distribution and the possible roles they play in bacterial cells remains challenging. To address this gap, we developed SeqWord Motif Mapper (SWMM), a computational tool designed for the statistical analysis and visualization of bacterial methylation patterns. SWMM utilizes PacBio sequencing data to identify sequence coverage, methylation motif distribution, and putative functional associations. Implemented in Python 3.9, the tool is platform-independent and requires minimal dependencies, making it accessible to a wide range of users. The SWMM command-line interface and a web-based version of the program facilitate the exploration of epigenetic modifications across bacterial genomes. Through case studies on different bacterial and archaeal taxa, we demonstrated that genome methylation in microorganisms extends beyond canonical sites and possibly influences gene expression, adaptation, and genome architecture. The tool enables detailed statistical evaluation of methylation motif distribution and provides insights into the potential regulatory roles of epigenetic modifications in bacterial genomes. SWMM is freely available at <span><span>https://begp.bi.up.ac.za</span><svg><path></path></svg></span>, with source code hosted on GitHub at <span><span>https://github.com/chrilef/BactEpiGenPro</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"437 19","pages":"Article 169307"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283625003730","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genomic methylation in bacteria plays a crucial role in gene regulation, chromosome replication, pathogenicity, and defense against phages. While single-molecule real-time (SMRT) sequencing technologies have advanced the detection of epigenetically modified bases, the statistical analysis of their distribution and the possible roles they play in bacterial cells remains challenging. To address this gap, we developed SeqWord Motif Mapper (SWMM), a computational tool designed for the statistical analysis and visualization of bacterial methylation patterns. SWMM utilizes PacBio sequencing data to identify sequence coverage, methylation motif distribution, and putative functional associations. Implemented in Python 3.9, the tool is platform-independent and requires minimal dependencies, making it accessible to a wide range of users. The SWMM command-line interface and a web-based version of the program facilitate the exploration of epigenetic modifications across bacterial genomes. Through case studies on different bacterial and archaeal taxa, we demonstrated that genome methylation in microorganisms extends beyond canonical sites and possibly influences gene expression, adaptation, and genome architecture. The tool enables detailed statistical evaluation of methylation motif distribution and provides insights into the potential regulatory roles of epigenetic modifications in bacterial genomes. SWMM is freely available at https://begp.bi.up.ac.za, with source code hosted on GitHub at https://github.com/chrilef/BactEpiGenPro.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.