Relative Thermodynamic Stability of α and β PVDF Crystal Phases: A Molecular Simulation Methodology.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Shubham Mireja, Devang V Khakhar
{"title":"Relative Thermodynamic Stability of α and β PVDF Crystal Phases: A Molecular Simulation Methodology.","authors":"Shubham Mireja, Devang V Khakhar","doi":"10.1021/acs.jpcb.5c01058","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(vinylidene fluoride) (PVDF) is a piezoelectric polymer, with the crystalline β-phase having the highest polarity among all its phases. A multistage transformation process is developed, using molecular dynamics simulations, to compute the free energy difference between α- and β-phases of PVDF. Methods of free energy perturbation and Jarzynski's equality were used to determine Helmholtz free energy change, Δ<i>F</i>, for the individual stages, from which the Gibbs free energy difference, Δ<i>G</i>, between the α- and β-phases was calculated. Infinitely large crystals modeled using periodic boundaries with 36 chains and 12 monomers in each chain were used for the study. All-atom simulations were performed with the force fields previously developed for PVDF. In concurrence with experimental observations, the α-phase was found to be thermodynamically more stable at normal temperature and pressure conditions. The β-phase was found to be more stable at high and low temperatures and high pressure.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c01058","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(vinylidene fluoride) (PVDF) is a piezoelectric polymer, with the crystalline β-phase having the highest polarity among all its phases. A multistage transformation process is developed, using molecular dynamics simulations, to compute the free energy difference between α- and β-phases of PVDF. Methods of free energy perturbation and Jarzynski's equality were used to determine Helmholtz free energy change, ΔF, for the individual stages, from which the Gibbs free energy difference, ΔG, between the α- and β-phases was calculated. Infinitely large crystals modeled using periodic boundaries with 36 chains and 12 monomers in each chain were used for the study. All-atom simulations were performed with the force fields previously developed for PVDF. In concurrence with experimental observations, the α-phase was found to be thermodynamically more stable at normal temperature and pressure conditions. The β-phase was found to be more stable at high and low temperatures and high pressure.

α和β PVDF晶体相的相对热力学稳定性:分子模拟方法。
聚偏氟乙烯(PVDF)是一种压电聚合物,其结晶β相在其所有相中具有最高的极性。利用分子动力学模拟,建立了PVDF的多阶段转化过程,计算了PVDF α-相和β-相之间的自由能差。利用自由能摄动法和Jarzynski方程确定了各阶段的亥姆霍兹自由能变化ΔF,并由此计算了α-相和β-相之间的吉布斯自由能差ΔG。无限大的晶体采用周期边界建模,其中有36条链,每条链上有12个单体。用先前为PVDF开发的力场进行了全原子模拟。与实验观察相一致,α-相在常温常压条件下热力学更稳定。结果表明,β相在高温、低温和高压条件下具有较好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信