MV-guided deformable convolution network for compressed video action recognition with P-frames

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuting Mou, Ke Xu, Xinghao Jiang, Tanfeng Sun
{"title":"MV-guided deformable convolution network for compressed video action recognition with P-frames","authors":"Yuting Mou,&nbsp;Ke Xu,&nbsp;Xinghao Jiang,&nbsp;Tanfeng Sun","doi":"10.1016/j.neucom.2025.130770","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale deep models have driven substantial progress in action recognition, but their heavy computation and the use of full-resolution RGB frames raise latency and privacy concerns. Compressed-domain methods reduce overhead by operating on codec outputs (I-frames, P-frames) but still rely on privacy-sensitive I-frames and incur nontrivial decoding costs. To overcome these limitations, we propose a novel P-frame only framework that (1) employs deformable convolutions to exploit the spatial sparsity of residual maps in P-frames and (2) introduces a Motion Vector–guided Deformable Convolution Network (MV-DCN) that uses motion vectors to predict adaptive sampling offsets. To transfer semantic knowledge from RGB features without decoding I-frames, we further design a Motion-Appearance Mutual Learning (MA-ML) scheme for cross domain distillation. Extensive experiments demonstrate that our model achieves competitive accuracy and speed compared to raw domain and traditional compressed domain approaches, while effectively preserving privacy by utilizing only P-frames.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"649 ","pages":"Article 130770"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014420","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale deep models have driven substantial progress in action recognition, but their heavy computation and the use of full-resolution RGB frames raise latency and privacy concerns. Compressed-domain methods reduce overhead by operating on codec outputs (I-frames, P-frames) but still rely on privacy-sensitive I-frames and incur nontrivial decoding costs. To overcome these limitations, we propose a novel P-frame only framework that (1) employs deformable convolutions to exploit the spatial sparsity of residual maps in P-frames and (2) introduces a Motion Vector–guided Deformable Convolution Network (MV-DCN) that uses motion vectors to predict adaptive sampling offsets. To transfer semantic knowledge from RGB features without decoding I-frames, we further design a Motion-Appearance Mutual Learning (MA-ML) scheme for cross domain distillation. Extensive experiments demonstrate that our model achieves competitive accuracy and speed compared to raw domain and traditional compressed domain approaches, while effectively preserving privacy by utilizing only P-frames.
mv引导的可变形卷积网络用于p帧压缩视频动作识别
大规模深度模型在动作识别方面取得了实质性进展,但它们的繁重计算和全分辨率RGB帧的使用引起了延迟和隐私问题。压缩域方法通过对编解码器输出(i帧,p帧)进行操作来减少开销,但仍然依赖于隐私敏感的i帧,并产生可观的解码成本。为了克服这些限制,我们提出了一种新的p帧框架:(1)使用可变形卷积来利用p帧中残差映射的空间稀疏性;(2)引入运动矢量引导的可变形卷积网络(MV-DCN),该网络使用运动矢量来预测自适应采样偏移。为了在不解码i帧的情况下从RGB特征转移语义知识,我们进一步设计了一种跨域蒸馏的运动-外观互学习(MA-ML)方案。大量的实验表明,与原始域和传统压缩域方法相比,我们的模型具有竞争力的准确性和速度,同时仅使用p帧有效地保护了隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信