From Corrosion to Creation: Interfacial De-Electronation Drives Hydrogenation-Energy Symbiosis.

Yueqing Wang, Xueying Cao, Chengdong Yang, Wenwen Cai, Xinxin Shu, Yuhan Li, Jing Zhu, Jizhen Ma, Jintao Zhang
{"title":"From Corrosion to Creation: Interfacial De-Electronation Drives Hydrogenation-Energy Symbiosis.","authors":"Yueqing Wang, Xueying Cao, Chengdong Yang, Wenwen Cai, Xinxin Shu, Yuhan Li, Jing Zhu, Jizhen Ma, Jintao Zhang","doi":"10.1002/anie.202507722","DOIUrl":null,"url":null,"abstract":"<p><p>Metal corrosion, conventionally perceived as a destructive phenomenon driven by de-electronation, imposes significant economic burdens and safety hazards. To repurpose corrosion into a valuable resource, we demonstrate a macroscopic corrosion battery concept that harnesses galvanic corrosion to drive the synthesis of metal-organic frameworks (MOFs), high-value chemicals, and energy generation, challenging conventional corrosion mitigation paradigms. By spatially segregating the corrosion process, the system couples anodic metal de-electronation with MOF deposition while integrating diverse cathodic reactions, including the hydrogen evolution reaction, oxygen reduction, electrocatalytic hydrogenation, and hydrogen peroxide reduction with remarkable accelerated kinetics, thereby achieving universal MOFs and chemical synthesis with high electron and atom utilization efficiencies. The prototype system demonstrates concurrent production of p-aminophenol (14.3 mg cm<sup>-2</sup> h<sup>-1</sup>) and zinc oxalate (86.9 mg cm<sup>-2</sup> h<sup>-1</sup>) while generating 34.2 mW cm<sup>-2</sup> of electrical power. Techno-economic analysis establishes the inaugural empirical validation of economic feasibility for corrosion-driven energy-matter symbiosis, highlighting its high gross profit. Transcending conventional corrosion engineering boundaries for inorganic synthesis, this methodology mechanistically deciphers MOF growth kinetics and advanced system design. By broadening the scope of corrosion utilization, this work enables a paradigm shift from damage mitigation to value creation, providing a blueprint for sustainable chemical-energy ecosystems.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202507722"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202507722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal corrosion, conventionally perceived as a destructive phenomenon driven by de-electronation, imposes significant economic burdens and safety hazards. To repurpose corrosion into a valuable resource, we demonstrate a macroscopic corrosion battery concept that harnesses galvanic corrosion to drive the synthesis of metal-organic frameworks (MOFs), high-value chemicals, and energy generation, challenging conventional corrosion mitigation paradigms. By spatially segregating the corrosion process, the system couples anodic metal de-electronation with MOF deposition while integrating diverse cathodic reactions, including the hydrogen evolution reaction, oxygen reduction, electrocatalytic hydrogenation, and hydrogen peroxide reduction with remarkable accelerated kinetics, thereby achieving universal MOFs and chemical synthesis with high electron and atom utilization efficiencies. The prototype system demonstrates concurrent production of p-aminophenol (14.3 mg cm-2 h-1) and zinc oxalate (86.9 mg cm-2 h-1) while generating 34.2 mW cm-2 of electrical power. Techno-economic analysis establishes the inaugural empirical validation of economic feasibility for corrosion-driven energy-matter symbiosis, highlighting its high gross profit. Transcending conventional corrosion engineering boundaries for inorganic synthesis, this methodology mechanistically deciphers MOF growth kinetics and advanced system design. By broadening the scope of corrosion utilization, this work enables a paradigm shift from damage mitigation to value creation, providing a blueprint for sustainable chemical-energy ecosystems.

从腐蚀到生成:界面去电子化驱动氢能共生。
金属腐蚀通常被认为是一种由去电子化驱动的破坏性现象,它带来了巨大的经济负担和安全隐患。为了将腐蚀转化为宝贵的资源,我们展示了一种宏观腐蚀电池概念,该概念利用电偶腐蚀来驱动高价值化学品的合成和能源生产,挑战了传统的腐蚀缓解模式。该体系通过空间隔离腐蚀过程,将金属阳极脱电子与金属有机框架(MOFs)沉积耦合在一起,同时将析氢反应、氧还原、电催化加氢和过氧化氢还原等多种阴极反应整合在一起,具有显著的加速动力学。该原型系统可以同时产生对氨基酚(14.3 mg cm-2 h-1)和草酸锌(86.9 mg cm-2 h-1),同时产生34.2 mW cm-2的电力。技术经济分析建立了腐蚀驱动的能源-物质共生经济可行性的初步实证验证,突出了其高毛利润。该方法超越了无机合成的传统腐蚀工程边界,从机械上解释了MOF的生长动力学和先进的系统设计。通过扩大腐蚀利用的范围,这项工作实现了从减轻损害到创造价值的范式转变,为可持续的化学能源生态系统提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信