Liancheng Hu, Yimin Cai, Xuwen Guo, Li Wang, Yongjie Jiang, Xiaowei Li, Ning Liu, Wen Feng, Lihua Yuan
{"title":"A Macrocycle-Based Supramolecular Strategy for Interchangeable Screwdriver-Like on-Demand Post-Functionalization of Covalent Organic Framework.","authors":"Liancheng Hu, Yimin Cai, Xuwen Guo, Li Wang, Yongjie Jiang, Xiaowei Li, Ning Liu, Wen Feng, Lihua Yuan","doi":"10.1002/anie.202510534","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing functionalized covalent organic frameworks (COFs) through post-functionalization constitutes one of the most important approaches to applications, but is frequently plagued by limited reaction types, tedious synthesis of different precursors, and time-consuming screening of synthetic parameters for COFs. Moreover, their functions are difficult to change once the functionalities are covalently attached to COF skeletons. Herein, we report a macrocycle-based supramolecular strategy for variable noncovalent post-functionalization on the same COF platform like an interchangeable screwdriver. As a proof of concept, pillar[5]arene (P5A) with electron-rich cavity is incorporated into COF as macrocycle host to anchor different electron-deficient guests of various functions. Such a design allows tunable post-functionalization of COF through host-guest interactions for customized utilities, which has been demonstrated by using a series of guests including organic salts for iodine capture and cyano-based ligands for metal ion separation. Removing the guests enables recycling of COF, consecutive reinstallation of different guests, and continuous use for implementing expected tasks. This work establishes a general noncovalent approach to on-demand interchangeable post-functionalization of COFs.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202510534"},"PeriodicalIF":16.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202510534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Constructing functionalized covalent organic frameworks (COFs) through post-functionalization constitutes one of the most important approaches to applications, but is frequently plagued by limited reaction types, tedious synthesis of different precursors, and time-consuming screening of synthetic parameters for COFs. Moreover, their functions are difficult to change once the functionalities are covalently attached to COF skeletons. Herein, we report a macrocycle-based supramolecular strategy for variable noncovalent post-functionalization on the same COF platform like an interchangeable screwdriver. As a proof of concept, pillar[5]arene (P5A) with electron-rich cavity is incorporated into COF as macrocycle host to anchor different electron-deficient guests of various functions. Such a design allows tunable post-functionalization of COF through host-guest interactions for customized utilities, which has been demonstrated by using a series of guests including organic salts for iodine capture and cyano-based ligands for metal ion separation. Removing the guests enables recycling of COF, consecutive reinstallation of different guests, and continuous use for implementing expected tasks. This work establishes a general noncovalent approach to on-demand interchangeable post-functionalization of COFs.