{"title":"A classical anti-autophagic viral protein reshapes mitochondria for immune evasion.","authors":"Qing Zhu, Chengyu Liang","doi":"10.1080/15548627.2025.2522130","DOIUrl":null,"url":null,"abstract":"<p><p>Viral subversion of macroautophagy/autophagy is a well-established immune evasion strategy, with BCL2 homologs from γ-herpesviruses serving as prototypical inhibitors through BECN1 (beclin 1) sequestration. Yet the full spectrum of their functions remains incompletely understood. In our recent study, we uncovered a non-canonical role for the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded BCL2 homolog (vBCL2) during late lytic replication. Unexpectedly, vBCL2 hijacks the host NDP kinase NME2/NM23-H2 to activate the mitochondrial fission GTPase DNM1L/DRP1, promoting mitochondrial fragmentation. This organelle remodeling dismantles MAVS-mediated antiviral signaling and facilitates virion assembly. A vBCL2 mutant unable to bind NME2 fails to induce fission or complete the viral lifecycle. These findings provide a long-sought answer to why vBCL2 is indispensable during lytic infection, and uncover a new immune evasion strategy centered on mitochondrial control. Our work expands the current view of virus-organelle interactions beyond canonical autophagy control and offers new targets for therapeutic intervention.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":14.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2522130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Viral subversion of macroautophagy/autophagy is a well-established immune evasion strategy, with BCL2 homologs from γ-herpesviruses serving as prototypical inhibitors through BECN1 (beclin 1) sequestration. Yet the full spectrum of their functions remains incompletely understood. In our recent study, we uncovered a non-canonical role for the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded BCL2 homolog (vBCL2) during late lytic replication. Unexpectedly, vBCL2 hijacks the host NDP kinase NME2/NM23-H2 to activate the mitochondrial fission GTPase DNM1L/DRP1, promoting mitochondrial fragmentation. This organelle remodeling dismantles MAVS-mediated antiviral signaling and facilitates virion assembly. A vBCL2 mutant unable to bind NME2 fails to induce fission or complete the viral lifecycle. These findings provide a long-sought answer to why vBCL2 is indispensable during lytic infection, and uncover a new immune evasion strategy centered on mitochondrial control. Our work expands the current view of virus-organelle interactions beyond canonical autophagy control and offers new targets for therapeutic intervention.