NetMedPy: a Python package for large-scale network medicine screening.

IF 5.4
Andres Aldana, Michael Sebek, Gordana Ispirova, Rodrigo Dorantes-Gilardi, Joseph Loscalzo, Albert-László Barabási, Giulia Menichetti
{"title":"NetMedPy: a Python package for large-scale network medicine screening.","authors":"Andres Aldana, Michael Sebek, Gordana Ispirova, Rodrigo Dorantes-Gilardi, Joseph Loscalzo, Albert-László Barabási, Giulia Menichetti","doi":"10.1093/bioinformatics/btaf338","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Network medicine leverages the quantification of information flow within sub-cellular networks to elucidate disease etiology and comorbidity, as well as to predict drug efficacy and identify potential therapeutic targets. However, current Network Medicine toolsets often lack computationally efficient data processing pipelines that support diverse scoring functions, network distance metrics, and null models. These limitations hamper their application in large-scale molecular screening, hypothesis testing, and ensemble modeling. To address these challenges, we introduce NetMedPy, a highly efficient and versatile computational package designed for comprehensive Network Medicine analyses.</p><p><strong>Availability and implementation: </strong>NetMedPy is an open-source Python package under an MIT license. Source code, documentation, and installation instructions can be downloaded from https://github.com/menicgiulia/NetMedPy and https://pypi.org/project/NetMedPy. The package can run on any standard desktop computer or computing cluster.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Network medicine leverages the quantification of information flow within sub-cellular networks to elucidate disease etiology and comorbidity, as well as to predict drug efficacy and identify potential therapeutic targets. However, current Network Medicine toolsets often lack computationally efficient data processing pipelines that support diverse scoring functions, network distance metrics, and null models. These limitations hamper their application in large-scale molecular screening, hypothesis testing, and ensemble modeling. To address these challenges, we introduce NetMedPy, a highly efficient and versatile computational package designed for comprehensive Network Medicine analyses.

Availability and implementation: NetMedPy is an open-source Python package under an MIT license. Source code, documentation, and installation instructions can be downloaded from https://github.com/menicgiulia/NetMedPy and https://pypi.org/project/NetMedPy. The package can run on any standard desktop computer or computing cluster.

Abstract Image

NetMedPy:用于大规模网络医学筛选的Python包。
摘要:网络医学利用亚细胞网络内信息流的量化来阐明疾病的病因和合并症,以及预测药物疗效和确定潜在的治疗靶点。然而,当前的网络医学工具集通常缺乏支持各种评分功能、网络距离度量和零模型的计算效率高的数据处理管道。这些限制阻碍了它们在大规模分子筛选、假设检验和集成建模中的应用。为了应对这些挑战,我们介绍了NetMedPy,这是一个高效、通用的计算包,专为全面的网络医学分析而设计。可用性:NetMedPy是MIT许可下的开源Python包。源代码、文档和安装说明可以从https://github.com/menicgiulia/NetMedPy和https://pypi.org/project/NetMedPy下载。该软件包可以在任何标准台式计算机或计算集群上运行。补充信息:补充数据可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信