Width Stability of Rotationally Symmetric Metrics.

IF 1.5 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2025-01-01 Epub Date: 2025-06-24 DOI:10.1007/s12220-025-02020-5
Hunter Stufflebeam, Paul Sweeney
{"title":"Width Stability of Rotationally Symmetric Metrics.","authors":"Hunter Stufflebeam, Paul Sweeney","doi":"10.1007/s12220-025-02020-5","DOIUrl":null,"url":null,"abstract":"<p><p>In 2018, Marques and Neves proposed a volume preserving intrinsic flat stability conjecture concerning their width rigidity theorem for the unit round 3-sphere. In this work, we establish the validity of this conjecture under the additional assumption of rotational symmetry. Furthermore, we obtain a rigidity theorem in dimensions at least three for rotationally symmetric manifolds, which is analogous to the width rigidity theorem of Marques and Neves. We also prove a volume preserving intrinsic flat stability result for this rigidity theorem. Lastly, we study variants of Marques and Neves' stability conjecture. In the first, we show Gromov-Hausdorff convergence outside of certain \"bad\" sets. In the second, we assume non-negative Ricci curvature and show Gromov-Hausdorff stability.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 8","pages":"238"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-025-02020-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2018, Marques and Neves proposed a volume preserving intrinsic flat stability conjecture concerning their width rigidity theorem for the unit round 3-sphere. In this work, we establish the validity of this conjecture under the additional assumption of rotational symmetry. Furthermore, we obtain a rigidity theorem in dimensions at least three for rotationally symmetric manifolds, which is analogous to the width rigidity theorem of Marques and Neves. We also prove a volume preserving intrinsic flat stability result for this rigidity theorem. Lastly, we study variants of Marques and Neves' stability conjecture. In the first, we show Gromov-Hausdorff convergence outside of certain "bad" sets. In the second, we assume non-negative Ricci curvature and show Gromov-Hausdorff stability.

旋转对称度量的宽度稳定性。
2018年,Marques和Neves在单位圆3球的宽度刚性定理基础上提出了一个保体积的本然平面稳定性猜想。在此工作中,我们在旋转对称的附加假设下建立了这个猜想的有效性。进一步,我们得到了旋转对称流形在至少3维上的刚性定理,它类似于Marques和Neves的宽度刚性定理。我们还证明了该刚性定理的一个保体积的本征平面稳定性结果。最后,我们研究了Marques和Neves稳定性猜想的变体。首先,我们证明了Gromov-Hausdorff收敛性在某些“坏”集合之外。在第二部分,我们假设非负Ricci曲率并证明Gromov-Hausdorff稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信