Hany Sadek Ayoub Ghaly, Naisana Seyedasli, Pegah Varamini
{"title":"Enhanced Nanoprecipitation Method for the Production of PLGA Nanoparticles for Oncology Applications.","authors":"Hany Sadek Ayoub Ghaly, Naisana Seyedasli, Pegah Varamini","doi":"10.1208/s12248-025-01096-9","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we report a new modified nanoprecipitation method for the fabrication of water-dispersible Poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating three poorly water-soluble anticancer agents as model drugs: paclitaxel (PTX), docetaxel (DTX) or curcumin (Cur). These nanoparticles were water dispersible with favourable size for anticancer applications (below 200 nm) and relatively high drug loading (6.3-8.9%). These nanoparticles were stable for four weeks in solid state and up to 48 h when dispersed in water. PTX and Cur nanoparticles showed a very minimal release of the payload during a 72-h in vitro release study. The new method also yielded reproducible results across three different batches of each type of nanoparticles and following three times upscaling of PTX nanoparticles. PTX and Cur nanoparticles were more effective than the free drugs against MDA-MB-231 cells (p < 0.05). In addition, PTX nanoparticles showed a significant enhanced induction of early apoptosis in MDA-MB-231 cells (42.3%) in comparison to free PTX (23.7%, p < 0.05). Both flow cytometry and confocal microscopy confirmed the uptake of the nanoparticles by MDA-MB-231 cells. In conclusion, our modified nanoprecipitation method produces PLGA nanoparticles loaded with different anticancer agents and suitable for cancer therapy.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 5","pages":"113"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01096-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we report a new modified nanoprecipitation method for the fabrication of water-dispersible Poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating three poorly water-soluble anticancer agents as model drugs: paclitaxel (PTX), docetaxel (DTX) or curcumin (Cur). These nanoparticles were water dispersible with favourable size for anticancer applications (below 200 nm) and relatively high drug loading (6.3-8.9%). These nanoparticles were stable for four weeks in solid state and up to 48 h when dispersed in water. PTX and Cur nanoparticles showed a very minimal release of the payload during a 72-h in vitro release study. The new method also yielded reproducible results across three different batches of each type of nanoparticles and following three times upscaling of PTX nanoparticles. PTX and Cur nanoparticles were more effective than the free drugs against MDA-MB-231 cells (p < 0.05). In addition, PTX nanoparticles showed a significant enhanced induction of early apoptosis in MDA-MB-231 cells (42.3%) in comparison to free PTX (23.7%, p < 0.05). Both flow cytometry and confocal microscopy confirmed the uptake of the nanoparticles by MDA-MB-231 cells. In conclusion, our modified nanoprecipitation method produces PLGA nanoparticles loaded with different anticancer agents and suitable for cancer therapy.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.