Zijian Wang, I L Han, Jangho Lee, Guangyu Li, Peisheng He, Mathew T Baldwin, Jenny Kao-Kniffin, Liyou Wu, Jizhong Zhou, April Z Gu
{"title":"Climate Warming Enhances Biodiversity and Stability of Grassland Soil Phosphorus-Cycling Microbial Communities.","authors":"Zijian Wang, I L Han, Jangho Lee, Guangyu Li, Peisheng He, Mathew T Baldwin, Jenny Kao-Kniffin, Liyou Wu, Jizhong Zhou, April Z Gu","doi":"10.1093/ismejo/wraf118","DOIUrl":null,"url":null,"abstract":"<p><p>Climate warming poses significant challenges to global phosphorus sustainability, an essential component of Earth biogeochemistry cycling and water-food-energy nexus. Despite the crucial role of polyphosphate-accumulating organism as key functional microbial agents in phosphorus cycling, the impacts of global climate warming on polyphosphate accumulating organism communities remain largely enigmatic. This study investigates the effects of climate warming on the taxonomic, network, and functional profiles of soil bacterial polyphosphate-accumulating organisms, leveraging fluorescence-activated cell sorting and single-cell Raman spectroscopy. Climate warming enhances both taxonomic and functional biodiversity of polyphosphate-accumulating organisms via biotic interactions and environmental filtering, with observed functionality-biodiversity relationships supporting the functional redundancy theory. Furthermore, polyphosphate-accumulating organism network complexity and stability rise under warming with strengthened positive relationships, supporting stress gradient hypothesis and the belief that complexity begets stability. Finally, polyphosphate-accumulating organisms are significantly correlated to key ecosystem functioning in carbon and phosphorus cycling under warming. Our study suggests that preserving polyphosphate-accumulating organism communities is crucial for maintaining soil ecosystem functioning and sustainable phosphorus management in a warming world and opens avenues for predicting the responses of other functional microbial groups to climate change, beneficially or maliciously.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf118","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate warming poses significant challenges to global phosphorus sustainability, an essential component of Earth biogeochemistry cycling and water-food-energy nexus. Despite the crucial role of polyphosphate-accumulating organism as key functional microbial agents in phosphorus cycling, the impacts of global climate warming on polyphosphate accumulating organism communities remain largely enigmatic. This study investigates the effects of climate warming on the taxonomic, network, and functional profiles of soil bacterial polyphosphate-accumulating organisms, leveraging fluorescence-activated cell sorting and single-cell Raman spectroscopy. Climate warming enhances both taxonomic and functional biodiversity of polyphosphate-accumulating organisms via biotic interactions and environmental filtering, with observed functionality-biodiversity relationships supporting the functional redundancy theory. Furthermore, polyphosphate-accumulating organism network complexity and stability rise under warming with strengthened positive relationships, supporting stress gradient hypothesis and the belief that complexity begets stability. Finally, polyphosphate-accumulating organisms are significantly correlated to key ecosystem functioning in carbon and phosphorus cycling under warming. Our study suggests that preserving polyphosphate-accumulating organism communities is crucial for maintaining soil ecosystem functioning and sustainable phosphorus management in a warming world and opens avenues for predicting the responses of other functional microbial groups to climate change, beneficially or maliciously.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.