In vitro to in vivo translation of artificial intelligence for clinical use: screening for acute coronary syndrome to identify ST-elevation myocardial infarction.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gabrielle Bunney, Kate Miller, Anna Graber-Naidich, Rana Kabeer, Sean M Bloos, Alexander J Wessels, Melissa A Pasao, Marium Rizvi, Ian P Brown, Maame Yaa A B Yiadom
{"title":"In vitro to in vivo translation of artificial intelligence for clinical use: screening for acute coronary syndrome to identify ST-elevation myocardial infarction.","authors":"Gabrielle Bunney, Kate Miller, Anna Graber-Naidich, Rana Kabeer, Sean M Bloos, Alexander J Wessels, Melissa A Pasao, Marium Rizvi, Ian P Brown, Maame Yaa A B Yiadom","doi":"10.1093/jamia/ocaf101","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The integration of predictive models into live clinical care requires scientific testing before implementation to ensure patient safety. We built and technically implemented a model that predicts which patients require an electrocardiogram (ECG) to screen for heart attacks within 10 minutes of their arrival to the Emergency Department. We developed a structured framework for the in vitro to in vivo translation of the model through implementation as clinical decision support (CDS).</p><p><strong>Materials and methods: </strong>The CDS ran as a silent pilot for 2 months. We conducted (1) a Technical Component Analysis to ensure each part of the CDS coding functioned as planned, and (2) a Technical Fidelity Analysis to ensure agreement between the CDS's in vivo and the model's in vitro screening decisions.</p><p><strong>Results: </strong>The Technical Component Analysis indicated several small coding errors in CDS components that were addressed. During this period, the CDS processed 18 335 patient encounters. CDS fidelity to the model reflected raw agreement of 95.5% (CI, 95.2%-95.9%) and kappa of 87.6% (CI, 86.7%-88.6%). Additional coding errors were identified and were corrected.</p><p><strong>Discussion: </strong>Our structured framework for the in vitro to in vivo translation of our predictive model uncovered ways to improve performance in vivo and the validity of risk assessment decisions. Testing predictive models on live care data and accompanying analyses is necessary to safely implement a predictive model for clinical use.</p><p><strong>Conclusion: </strong>We developed a method for the translation of our model from in vitro to in vivo that can be utilized with other applications of predictive modeling in healthcare.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The integration of predictive models into live clinical care requires scientific testing before implementation to ensure patient safety. We built and technically implemented a model that predicts which patients require an electrocardiogram (ECG) to screen for heart attacks within 10 minutes of their arrival to the Emergency Department. We developed a structured framework for the in vitro to in vivo translation of the model through implementation as clinical decision support (CDS).

Materials and methods: The CDS ran as a silent pilot for 2 months. We conducted (1) a Technical Component Analysis to ensure each part of the CDS coding functioned as planned, and (2) a Technical Fidelity Analysis to ensure agreement between the CDS's in vivo and the model's in vitro screening decisions.

Results: The Technical Component Analysis indicated several small coding errors in CDS components that were addressed. During this period, the CDS processed 18 335 patient encounters. CDS fidelity to the model reflected raw agreement of 95.5% (CI, 95.2%-95.9%) and kappa of 87.6% (CI, 86.7%-88.6%). Additional coding errors were identified and were corrected.

Discussion: Our structured framework for the in vitro to in vivo translation of our predictive model uncovered ways to improve performance in vivo and the validity of risk assessment decisions. Testing predictive models on live care data and accompanying analyses is necessary to safely implement a predictive model for clinical use.

Conclusion: We developed a method for the translation of our model from in vitro to in vivo that can be utilized with other applications of predictive modeling in healthcare.

体外到体内翻译的人工智能临床应用:筛查急性冠状动脉综合征识别st段抬高型心肌梗死
目的:将预测模型整合到临床现场护理中,需要在实施前进行科学的测试,以确保患者的安全。我们建立并在技术上实现了一个模型,该模型可以预测哪些患者在到达急诊科10分钟内需要心电图(ECG)来筛查心脏病发作。我们通过临床决策支持(CDS)的实施,为模型的体外到体内翻译开发了一个结构化框架。材料与方法:cd作为无声先导运行2个月。我们进行了(1)技术成分分析,以确保CDS编码的每个部分按计划发挥作用;(2)技术保真度分析,以确保体内CDS和模型体外筛选决策之间的一致性。结果:技术成分分析表明,几个小的编码错误的CDS组件被解决。在此期间,CDS处理了18 335例患者就诊。CDS对模型的保真度反映了95.5% (CI, 95.2%-95.9%)和87.6% (CI, 86.7%-88.6%)的原始一致性。发现并纠正了其他编码错误。讨论:我们的预测模型的体外到体内翻译的结构化框架揭示了提高体内性能和风险评估决策有效性的方法。对现场护理数据和伴随的分析测试预测模型是必要的,以安全实现用于临床使用的预测模型。结论:我们开发了一种将我们的模型从体外翻译到体内的方法,可以用于医疗保健预测建模的其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信