Improving Ex Vivo Nasal Mucosa Experimental Design for Drug Permeability Assessments: Correcting Mucosal Thickness Interference and Reevaluating Fluorescein Sodium as an Integrity Marker for Chemically Induced Mucosal Injury.
Shengnan Zhao, Jieyu Zuo, Marlon C Mallillin, Ruikun Tang, Michael R Doschak, Neal M Davies, Raimar Löbenberg
{"title":"Improving Ex Vivo Nasal Mucosa Experimental Design for Drug Permeability Assessments: Correcting Mucosal Thickness Interference and Reevaluating Fluorescein Sodium as an Integrity Marker for Chemically Induced Mucosal Injury.","authors":"Shengnan Zhao, Jieyu Zuo, Marlon C Mallillin, Ruikun Tang, Michael R Doschak, Neal M Davies, Raimar Löbenberg","doi":"10.3390/ph18060889","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: Ex vivo nasal mucosa models provide physiologically relevant platforms for evaluating nasal drug permeability; however, their application is often limited by high experimental variability and the absence of standardized methodologies. This study aimed to improve experimental design by addressing two major limitations: the confounding effects of mucosal thickness and the questionable reliability of fluorescein sodium (Flu-Na) as an integrity marker for chemically induced mucosal injury. <b>Methods</b>: Permeability experiments were conducted using porcine nasal tissues mounted in Franz diffusion cells, with melatonin and Flu-Na as model compounds. Tissues of varying thickness were collected from both intra- and inter-individual sources, and a numerical simulation-based method was employed to normalize apparent permeability coefficients (Papp) to a standardized mucosal thickness of 0.80 mm. The effects of thickness normalization and chemically induced damage were systematically evaluated. <b>Results</b>: Thickness normalization substantially reduced variability in melatonin Papp, particularly within same-animal comparisons, thereby improving statistical power and data reliability. In contrast, Flu-Na exhibited inconsistent correlations across different pigs and failed to reflect the expected increase in permeability following isopropyl alcohol (IPA)-induced epithelial damage. These results suggest that the relationship between epithelial injury and paracellular transport may be non-linear and not universally applicable under ex vivo conditions, limiting the suitability of Flu-Na as a standalone marker of mucosal integrity. <b>Conclusions</b>: The findings highlight the importance of integrating mucosal thickness correction into standardized experimental protocols and call for a critical reassessment of Flu-Na in nasal drug delivery research.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18060889","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Ex vivo nasal mucosa models provide physiologically relevant platforms for evaluating nasal drug permeability; however, their application is often limited by high experimental variability and the absence of standardized methodologies. This study aimed to improve experimental design by addressing two major limitations: the confounding effects of mucosal thickness and the questionable reliability of fluorescein sodium (Flu-Na) as an integrity marker for chemically induced mucosal injury. Methods: Permeability experiments were conducted using porcine nasal tissues mounted in Franz diffusion cells, with melatonin and Flu-Na as model compounds. Tissues of varying thickness were collected from both intra- and inter-individual sources, and a numerical simulation-based method was employed to normalize apparent permeability coefficients (Papp) to a standardized mucosal thickness of 0.80 mm. The effects of thickness normalization and chemically induced damage were systematically evaluated. Results: Thickness normalization substantially reduced variability in melatonin Papp, particularly within same-animal comparisons, thereby improving statistical power and data reliability. In contrast, Flu-Na exhibited inconsistent correlations across different pigs and failed to reflect the expected increase in permeability following isopropyl alcohol (IPA)-induced epithelial damage. These results suggest that the relationship between epithelial injury and paracellular transport may be non-linear and not universally applicable under ex vivo conditions, limiting the suitability of Flu-Na as a standalone marker of mucosal integrity. Conclusions: The findings highlight the importance of integrating mucosal thickness correction into standardized experimental protocols and call for a critical reassessment of Flu-Na in nasal drug delivery research.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.