{"title":"Exploring Brazilian Green Propolis Phytochemicals in the Search for Potential Inhibitors of B-Raf<sup>600</sup>E Enzyme: A Theoretical Approach.","authors":"Garcia Ferreira de Souza, Airis Farias Santana, Fernanda Sanches Kuhl Antunes, Ramon Martins Cogo, Matheus Dornellas Pereira, Daniela Gonçales Galasse Rando, Carolina Passarelli Gonçalves","doi":"10.3390/ph18060902","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Melanoma is one of the most aggressive forms of skin cancer and is frequently associated with the B-Raf<sup>600</sup>E mutation, which constitutively activates the MAPK signaling pathway. Although selective inhibitors such as Vemurafenib offer clinical benefits, their long-term efficacy is often hindered by resistance mechanisms and adverse effects. In this study, twelve phytochemicals from Brazilian green propolis were evaluated for their potential as selective B-Raf<sup>600</sup>E inhibitors using a computational approach. <b>Methods:</b> Physicochemical, ADME, and electronic properties were assessed, followed by molecular docking using the B-Raf<sup>600</sup>E crystal structure (PDB ID: 3OG7). Redocking validation and 500 ns molecular dynamics simulations were performed to investigate the stability of the ligand-protein complexes, and free energy calculations were then computed. Results: Among the tested compounds, Artepillin C exhibited the strongest binding affinity (-8.17 kcal/mol) in docking and maintained stable interactions with key catalytic residues throughout the simulation, also presenting free energy of binding ΔG of -20.77 kcal/mol. HOMO-LUMO and electrostatic potential analyses further supported its reactivity and selectivity. Notably, Artepillin C remained bound within the ATP-binding site, mimicking several critical interactions observed with Vemurafenib. <b>Results:</b> Among the tested compounds, Artepillin C exhibited the strongest binding affinity (-8.17 kcal/mol) and maintained stable interactions with key catalytic residues throughout the simulation. HOMO-LUMO and electrostatic potential analyses further supported its reactivity and selectivity. Notably, Artepillin C remained bound within the ATP-binding site, mimicking several critical interactions observed with Vemurafenib. <b>Conclusions:</b> These findings indicate that Artepillin C is a promising natural compound for further development as a selective B-Raf<sup>600</sup>E inhibitor and suggest its potential utility in melanoma treatment strategies. This study reinforces the value of natural products as scaffolds for targeted drug design and supports continued experimental validation.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18060902","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Melanoma is one of the most aggressive forms of skin cancer and is frequently associated with the B-Raf600E mutation, which constitutively activates the MAPK signaling pathway. Although selective inhibitors such as Vemurafenib offer clinical benefits, their long-term efficacy is often hindered by resistance mechanisms and adverse effects. In this study, twelve phytochemicals from Brazilian green propolis were evaluated for their potential as selective B-Raf600E inhibitors using a computational approach. Methods: Physicochemical, ADME, and electronic properties were assessed, followed by molecular docking using the B-Raf600E crystal structure (PDB ID: 3OG7). Redocking validation and 500 ns molecular dynamics simulations were performed to investigate the stability of the ligand-protein complexes, and free energy calculations were then computed. Results: Among the tested compounds, Artepillin C exhibited the strongest binding affinity (-8.17 kcal/mol) in docking and maintained stable interactions with key catalytic residues throughout the simulation, also presenting free energy of binding ΔG of -20.77 kcal/mol. HOMO-LUMO and electrostatic potential analyses further supported its reactivity and selectivity. Notably, Artepillin C remained bound within the ATP-binding site, mimicking several critical interactions observed with Vemurafenib. Results: Among the tested compounds, Artepillin C exhibited the strongest binding affinity (-8.17 kcal/mol) and maintained stable interactions with key catalytic residues throughout the simulation. HOMO-LUMO and electrostatic potential analyses further supported its reactivity and selectivity. Notably, Artepillin C remained bound within the ATP-binding site, mimicking several critical interactions observed with Vemurafenib. Conclusions: These findings indicate that Artepillin C is a promising natural compound for further development as a selective B-Raf600E inhibitor and suggest its potential utility in melanoma treatment strategies. This study reinforces the value of natural products as scaffolds for targeted drug design and supports continued experimental validation.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.