Jaeryuk Kim, Sungwoo Bae, Jaeyong Choi, Sun-Wha Im, Bukyoung Cha, Gyeongseo Jung, Sun Wook Cho, Eul-Ju Seo, Young Ah Lee, Jin Chul Paeng, Young Joo Park, Jong-Il Kim
{"title":"Association of high-dose radioactive iodine therapy with PPM1D-mutated clonal hematopoiesis in older individuals.","authors":"Jaeryuk Kim, Sungwoo Bae, Jaeyong Choi, Sun-Wha Im, Bukyoung Cha, Gyeongseo Jung, Sun Wook Cho, Eul-Ju Seo, Young Ah Lee, Jin Chul Paeng, Young Joo Park, Jong-Il Kim","doi":"10.1002/1878-0261.70078","DOIUrl":null,"url":null,"abstract":"<p><p>While radioactive iodine therapy (RAIT) has been an effective treatment for thyroid cancer, its link to clonal hematopoiesis (CH) has been yet underexplored. In this study, error-corrected sequencing (median depth: 1926×) of 93 CH-related genes was performed from the blood samples of 358 thyroid cancer patients, including 110 controls (no RAIT) and 248 RAIT recipients. RAIT recipients were stratified into low- and high-dose groups using a 7.4 GBq cutoff. Multivariable logistic regression revealed that the high-dose group had a higher CH prevalence with variant allele frequency (VAF) higher than 2% compared to controls, especially in patients aged ≥50 (OR = 2.44, CI = 1.04-6.00, P = 0.04). Thirteen genes had mutations with VAF >2%, with DNMT3A, TET2, and PPM1D being the most common. Notably, only the PPM1D mutations were significantly linked to RAIT, occurring more frequently in the high-dose group (13%) compared to the low-dose group (5%) or controls (2%) at a VAF cutoff of 0.5%. In silico analyses indicated that truncating PPM1D mutations confer a selective advantage under high-dose RAIT and with older age. Although the prognostic implications of PPM1D-mutated CH remain to be further elucidated, these findings offer valuable insights for optimizing RAIT dosing in thyroid cancer patients.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70078","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
While radioactive iodine therapy (RAIT) has been an effective treatment for thyroid cancer, its link to clonal hematopoiesis (CH) has been yet underexplored. In this study, error-corrected sequencing (median depth: 1926×) of 93 CH-related genes was performed from the blood samples of 358 thyroid cancer patients, including 110 controls (no RAIT) and 248 RAIT recipients. RAIT recipients were stratified into low- and high-dose groups using a 7.4 GBq cutoff. Multivariable logistic regression revealed that the high-dose group had a higher CH prevalence with variant allele frequency (VAF) higher than 2% compared to controls, especially in patients aged ≥50 (OR = 2.44, CI = 1.04-6.00, P = 0.04). Thirteen genes had mutations with VAF >2%, with DNMT3A, TET2, and PPM1D being the most common. Notably, only the PPM1D mutations were significantly linked to RAIT, occurring more frequently in the high-dose group (13%) compared to the low-dose group (5%) or controls (2%) at a VAF cutoff of 0.5%. In silico analyses indicated that truncating PPM1D mutations confer a selective advantage under high-dose RAIT and with older age. Although the prognostic implications of PPM1D-mutated CH remain to be further elucidated, these findings offer valuable insights for optimizing RAIT dosing in thyroid cancer patients.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.