Pei-Shan Wu, Ting-An Chen, Bo-Yu Chen, Yasushi Ishihama, Miao-Hsia Lin
{"title":"A Methanolic Urea-enhanced Protein Extraction Enabling the Largest Bacterial Phosphorylation Resource.","authors":"Pei-Shan Wu, Ting-An Chen, Bo-Yu Chen, Yasushi Ishihama, Miao-Hsia Lin","doi":"10.1016/j.mcpro.2025.101019","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry (MS)-based phosphoproteomics analysis is a powerful approach for elucidating the regulatory roles of protein phosphorylation across all domain of life. However, bacterial phosphoproteomics still faces significant technical challenges due to the extremely low substoichiometry of phosphorylation evens and the structural complexity of bacterial cell envelopes, which impede efficient cell lysis, protein recovery and purity. To address these obstacles, we developed Methanolic Urea-enhanced Protein Extraction (MUPE), a streamlined, detergent-free, solvent-based method that leverages the amphiphilic nature of methanol and the chaotropic properties of urea to enhance protein yield and lysis efficiency. Furthermore, MUPE seamlessly integrates with liquid-liquid extraction, enabling efficient protein purification without requiring sample transfer and complex manipulations. This workflow significantly improves phosphoproteome coverage and quantitative accuracy across Gram-positive and Gram-negative bacteria, while minimizing sample input requirements. Our datasets substantially expand the known landscape of bacterial O-phosphorylation, revealing distinct phosphorylation preferences within bacterial signaling networks. Application of MUPE to Listeria monocytogenes under bile insult revealed extensive phosphorylation changes independent of protein expression, highlighting phosphorylation as a rapid and dynamic regulatory mechanism. Collectively, MUPE provides a robust and scalable platform for bacterial phosphoproteomic studies, advancing our understanding of phosphosignaling in the context of bacterial physiology and pathogenesis.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"101019"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.101019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mass spectrometry (MS)-based phosphoproteomics analysis is a powerful approach for elucidating the regulatory roles of protein phosphorylation across all domain of life. However, bacterial phosphoproteomics still faces significant technical challenges due to the extremely low substoichiometry of phosphorylation evens and the structural complexity of bacterial cell envelopes, which impede efficient cell lysis, protein recovery and purity. To address these obstacles, we developed Methanolic Urea-enhanced Protein Extraction (MUPE), a streamlined, detergent-free, solvent-based method that leverages the amphiphilic nature of methanol and the chaotropic properties of urea to enhance protein yield and lysis efficiency. Furthermore, MUPE seamlessly integrates with liquid-liquid extraction, enabling efficient protein purification without requiring sample transfer and complex manipulations. This workflow significantly improves phosphoproteome coverage and quantitative accuracy across Gram-positive and Gram-negative bacteria, while minimizing sample input requirements. Our datasets substantially expand the known landscape of bacterial O-phosphorylation, revealing distinct phosphorylation preferences within bacterial signaling networks. Application of MUPE to Listeria monocytogenes under bile insult revealed extensive phosphorylation changes independent of protein expression, highlighting phosphorylation as a rapid and dynamic regulatory mechanism. Collectively, MUPE provides a robust and scalable platform for bacterial phosphoproteomic studies, advancing our understanding of phosphosignaling in the context of bacterial physiology and pathogenesis.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes