{"title":"Sequence and Structure-based Prediction of Allosteric Sites.","authors":"Juan Xie, Gaoxiang Pan, Luhua Lai","doi":"10.1016/j.jmb.2025.169305","DOIUrl":null,"url":null,"abstract":"<p><p>Allosteric regulation in proteins is a critical aspect of cellular function, influencing various biological processes through conformational or dynamic changes induced by effector molecules. Allosteric drugs possess significant therapeutic value due to their unique advantages, such as high specificity and diverse regulatory types, yet their presence in clinical applications remains limited. Understanding the relationship between protein sequence, structure, and allosteric regulation can promote insights into allosteric mechanisms and facilitate allosteric drug design. In this review, we present an overview of marketed allosteric drugs, summarize recent computational methods for predicting allosteric sites based on protein sequences and structures, together with case studies of recent rational allosteric drug design. We also discuss challenges and future directions in computer-aided allosteric drug design, with emphasis on the potential of multi-modal data integration and interpretable deep learning models in improving allosteric site prediction and rational allosteric drug design.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169305"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169305","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Allosteric regulation in proteins is a critical aspect of cellular function, influencing various biological processes through conformational or dynamic changes induced by effector molecules. Allosteric drugs possess significant therapeutic value due to their unique advantages, such as high specificity and diverse regulatory types, yet their presence in clinical applications remains limited. Understanding the relationship between protein sequence, structure, and allosteric regulation can promote insights into allosteric mechanisms and facilitate allosteric drug design. In this review, we present an overview of marketed allosteric drugs, summarize recent computational methods for predicting allosteric sites based on protein sequences and structures, together with case studies of recent rational allosteric drug design. We also discuss challenges and future directions in computer-aided allosteric drug design, with emphasis on the potential of multi-modal data integration and interpretable deep learning models in improving allosteric site prediction and rational allosteric drug design.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.