Uniformly higher order accurate schemes for dynamics of charged particles under fast oscillating magnetic fields

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Megala Anandan, Benjamin Boutin, Nicolas Crouseilles
{"title":"Uniformly higher order accurate schemes for dynamics of charged particles under fast oscillating magnetic fields","authors":"Megala Anandan, Benjamin Boutin, Nicolas Crouseilles","doi":"10.1093/imanum/draf048","DOIUrl":null,"url":null,"abstract":"This work deals with the numerical approximation of plasmas that are confined by the effect of a fast oscillating magnetic field [Bostan, M. (2012), Transport of charged particles under fast oscillating magnetic fields. SIAM J. Math. Anal., 44, 1415–1447] in the Vlasov model. The presence of this magnetic field induces oscillations (in time) to the solution of the characteristic equations. Due to its multiscale character, a standard time discretization would lead to an inefficient solver. In this work, time integrators are derived and analyzed for a class of highly oscillatory differential systems. We prove the uniform accuracy property of these time integrators, meaning that the accuracy does not depend on the small parameter $\\varepsilon $. Moreover, we construct an extension of the scheme, which degenerates towards an energy preserving numerical scheme for the averaged model, when $\\varepsilon \\to 0$. Several numerical results illustrate the capabilities of the method.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"87 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work deals with the numerical approximation of plasmas that are confined by the effect of a fast oscillating magnetic field [Bostan, M. (2012), Transport of charged particles under fast oscillating magnetic fields. SIAM J. Math. Anal., 44, 1415–1447] in the Vlasov model. The presence of this magnetic field induces oscillations (in time) to the solution of the characteristic equations. Due to its multiscale character, a standard time discretization would lead to an inefficient solver. In this work, time integrators are derived and analyzed for a class of highly oscillatory differential systems. We prove the uniform accuracy property of these time integrators, meaning that the accuracy does not depend on the small parameter $\varepsilon $. Moreover, we construct an extension of the scheme, which degenerates towards an energy preserving numerical scheme for the averaged model, when $\varepsilon \to 0$. Several numerical results illustrate the capabilities of the method.
快速振荡磁场下带电粒子动力学的均匀高阶精确格式
这项工作涉及受快速振荡磁场影响的等离子体的数值近似[Bostan, M.(2012),快速振荡磁场下带电粒子的输运]。SIAM J. Math。分析的。[j]在Vlasov模型中的应用。磁场的存在引起特征方程的解(在时间上)振荡。由于其多尺度特性,标准时间离散化将导致求解效率低下。本文推导并分析了一类高振荡微分系统的时间积分器。我们证明了这些时间积分器的一致精度性质,即精度不依赖于小参数。此外,我们构造了该格式的推广,当$\varepsilon \到0$时,该格式退化为平均模型的能量守恒数值格式。几个数值结果说明了该方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信