{"title":"Hypoxic adipose-derived stem cell exosomes as carriers of miR-100-5p to enhance angiogenesis and suppress inflammation in diabetic foot ulcers","authors":"Hong Liu, Fei Hao, Bangtao Chen","doi":"10.1002/ccs3.70018","DOIUrl":null,"url":null,"abstract":"<p>Diabetic foot ulcer (DFU) is a severe diabetes complication characterized by impaired angiogenesis and chronic inflammation, leading to delayed wound healing. Exosomes (Exo) derived from hypoxic adipose-derived stem cells (H-ADSCs-Exo) show potential as therapeutic carriers. This study investigates the role of H-ADSCs-Exo carrying miR-100-5p in DFU healing. ADSCs were isolated, characterized, and their Exo analyzed via transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Transcriptome sequencing identified miR-100-5p as a key modulator of angiogenesis and inflammation. In vitro, H-ADSCs-Exo enhanced human umbilical vein endothelial cell and fibroblast proliferation, migration, and tube formation. In a rat DFU model, H-ADSCs-Exo administration reduced ulcer size, increased angiogenesis (VEGF/CD31 expression), and decreased inflammatory markers (TNF-α, IL-6). miR-100-5p overexpression further amplified these effects, demonstrating its critical role in Exo-mediated healing. These findings highlight the therapeutic potential of H-ADSCs-Exo in DFU treatment, offering insights into cell signaling mechanisms and paving the way for miRNA-based regenerative therapies.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot ulcer (DFU) is a severe diabetes complication characterized by impaired angiogenesis and chronic inflammation, leading to delayed wound healing. Exosomes (Exo) derived from hypoxic adipose-derived stem cells (H-ADSCs-Exo) show potential as therapeutic carriers. This study investigates the role of H-ADSCs-Exo carrying miR-100-5p in DFU healing. ADSCs were isolated, characterized, and their Exo analyzed via transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Transcriptome sequencing identified miR-100-5p as a key modulator of angiogenesis and inflammation. In vitro, H-ADSCs-Exo enhanced human umbilical vein endothelial cell and fibroblast proliferation, migration, and tube formation. In a rat DFU model, H-ADSCs-Exo administration reduced ulcer size, increased angiogenesis (VEGF/CD31 expression), and decreased inflammatory markers (TNF-α, IL-6). miR-100-5p overexpression further amplified these effects, demonstrating its critical role in Exo-mediated healing. These findings highlight the therapeutic potential of H-ADSCs-Exo in DFU treatment, offering insights into cell signaling mechanisms and paving the way for miRNA-based regenerative therapies.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.