ECCBO: An inherently safe Bayesian optimization with embedded constraint control for real-time process optimization

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Dinesh Krishnamoorthy
{"title":"ECCBO: An inherently safe Bayesian optimization with embedded constraint control for real-time process optimization","authors":"Dinesh Krishnamoorthy","doi":"10.1016/j.jprocont.2025.103467","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a model-free real-time optimization (RTO) framework that leverages unconstrained Bayesian optimization (BO) embedded with constraint control to achieve optimal steady-state operation of process systems without the need for detailed models. Leveraging the vertical decomposition of information flow with timescale separation, this paper proposes two approaches to BO with embedded constraint controllers that simplifies model-free RTO with unknown cost and constraints, while ensuring steady-state constraint feasibility. The first approach employs constraint controllers that controls the constraints to some feasible setpoint in the fast timescale, and an unconstrained BO finds the optimal setpoints to these controllers in the slower timescale. The second approach uses constraint controllers as safety filters, where BO searchers over the RTO degrees of freedom, which can be overridden by the constraint controller when necessary to ensure steady-state constraint feasibility. By embedding constraint controllers with Bayesian optimization, both approaches ensure zero cumulative constraint violation without depending on specific assumptions about the Gaussian process model used in Bayesian optimization, making it inherently safe. The proposed scheme is demonstrated on several illustrative benchmark examples.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"152 ","pages":"Article 103467"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000952","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a model-free real-time optimization (RTO) framework that leverages unconstrained Bayesian optimization (BO) embedded with constraint control to achieve optimal steady-state operation of process systems without the need for detailed models. Leveraging the vertical decomposition of information flow with timescale separation, this paper proposes two approaches to BO with embedded constraint controllers that simplifies model-free RTO with unknown cost and constraints, while ensuring steady-state constraint feasibility. The first approach employs constraint controllers that controls the constraints to some feasible setpoint in the fast timescale, and an unconstrained BO finds the optimal setpoints to these controllers in the slower timescale. The second approach uses constraint controllers as safety filters, where BO searchers over the RTO degrees of freedom, which can be overridden by the constraint controller when necessary to ensure steady-state constraint feasibility. By embedding constraint controllers with Bayesian optimization, both approaches ensure zero cumulative constraint violation without depending on specific assumptions about the Gaussian process model used in Bayesian optimization, making it inherently safe. The proposed scheme is demonstrated on several illustrative benchmark examples.
带嵌入式约束控制的内在安全贝叶斯优化,用于实时过程优化
本文提出了一种无模型实时优化(RTO)框架,该框架利用嵌入约束控制的无约束贝叶斯优化(BO)来实现过程系统的最优稳态运行,而不需要详细的模型。利用信息流的纵向分解和时间尺度分离,提出了两种嵌入式约束控制器BO方法,简化了具有未知成本和约束的无模型RTO,同时保证了稳态约束的可行性。第一种方法采用约束控制器,在快速时间尺度内将约束控制为可行的设定值,无约束BO在较慢时间尺度内找到这些控制器的最优设定值。第二种方法使用约束控制器作为安全过滤器,其中在RTO自由度上的BO搜索器可以在必要时被约束控制器覆盖,以确保稳态约束的可行性。通过将约束控制器嵌入贝叶斯优化,两种方法都可以确保零累积约束违反,而不依赖于贝叶斯优化中使用的高斯过程模型的特定假设,使其具有固有的安全性。通过几个典型的基准算例对该方案进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信